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Which generalizes better:

Bigger networks or smaller?

More complex models or simpler models?
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TL;DR:

Sensitivity of a trained neural network
to test inputs correlates with test error.
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Plan:

1. Motivation / interpretation
2. Sensitivity metrics
3. Experimental results



Why Search for Correlates of
Generalization?

e Understanding neural networks (NNs);

e Regularizers;
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Generalization?

e Model comparison: P|H|D| x P|DIH
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Bigger Networks Generalize Better

Historical trends of ImageNet competitions:
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(An Analysis of Deep Neural Network Models for Practical Applications

by Alfredo Canziani, Adam Paszke, Eugenio Culurciello)


https://arxiv.org/abs/1605.07678
https://arxiv.org/find/cs/1/au:+Canziani_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Paszke_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Culurciello_E/0/1/0/all/0/1

Bigger Networks Generalize Better

Single hidden layer networks:

MNIST CIFAR10
0.1 | | | | | | | | | | 0.8 | I I
— Training — Training
0.09r —— Test (at convergence) —8— Test (at convergence)
—a— Test (early stopping) 0.71 —A—Test (early stopping) ||

4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
H H

(H - number of hidden units)

(In Search of the Real Inductive Bias: On the Role of Implicit Reqularization in Deep Learning
by Behnam Neyshabur, Ryota Tomioka, Nathan Srebro)



https://arxiv.org/abs/1412.6614
https://arxiv.org/find/cs/1/au:+Neyshabur_B/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Tomioka_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Srebro_N/0/1/0/all/0/1

(Generalization gap

Bigger Networks Generalize Better

Many architectures and optimization choices:

(each point is a different network, 100% accurate on the whole training CIFAR10)
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Bigger Networks Generalize Better

Many architectures and optimization choices:

)

(each point is a different network, 100% accurate on the whole training CIFAR10
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>

Test error
~ 0.6

<

#parameters
~ 10°

Bigger Networks Generalize Better
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Bigger Networks Generalize Better
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Bigger Networks Generalize Better
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Why Sensitivity?

e Can reasonably assume a prior IP [H |in
favor of robustness to small perturbations In
the inputs.

e Many regularization / adversarial defense
strategies employ sensitivity to inputs.

e Can be computed independently of

parametrization.



Experimental Setup

h(z) = Wiro(Wi_10(--- Wix)

e Feedforward network;

e \With a pliecewise-linear activation O;
(e.g. ReLU, Hard-Tanh, Hard-Sigmoid, ...)

U

h is piecewise-linear on




Example of a Pw-linear Function



https://en.wikipedia.org/wiki/Piecewise_linear_function#/media/File:Piecewise_linear_function2D.svg

Input Domain: Interiors

h(z) — h(y) = b (2)(z —y) \
\

A linear function,

computable explicitly:

\

h/(.CE) — WkO'/(“')"'WQO'/(Wl.Q?)Wl 7

|

Local measure of sensitivity ~

W ()

—

/
2



Input Domain: Faces

oh' h'(e + tv) — h'(e — tv)

OV (e) = %E}(l) 2

~ (hy — hy)d(e)

/ / /
hy — hall ~ {[h1]] 1n; £

Local measure of sensitivity: 1p,/ p



Global Measures of Sensitivity

e Interiors: E,p,, ||h'(x)

(Jacobian norm at a data point)

~

*Faces: Ly ~Pp 7(
re{Ttxq|te[0;1]}

(estimated via transitions along a trajectory of pixel translations of a data point)

e Correspond to first and second terms in Taylor expansion.



(1) Sensitivity on/off Training Data Manifold

* Measure sensitivity along a
circular trajectory through
3 training points.

w/3 (point 1) 5

7 m (point 2)  Traversing such a
trajectory corresponds to

approaching and departing
from the training data
manifold.

57 /3 (point 3) |



Sensitivity on/off Training Data Manifold

Mean Jacobian norm

along...
_arandom ellipse
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Sensitivity on/off Training Data Manifold

Mean Jacobian norm

along...

a random ellipse

" an ellipse through 3 training points of a different class e Jacoblian norm
_an ellipse through 3 training points of the same class . :
dips dramatically

10k - - around training
100 ' ' data.
1 |
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| different digits
100 : :
/3 (point 1) m(point2)  57/3 (point 3) results in higner

NOIrm.
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Sensitivity on/off Training Data Manifold

Before training

(Linear region boundaries of the last (pre-logit) over a 2D slice in the input space through three training points)
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Sensitivity on/off Training Data Manifold

Transition density
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Sensitivity on/off Training Data Manifold

Transition density

From Roman:

along...
: > |s the plot correct?
_arandom ellipse o | |
. an elhpse thr Ough 3 U‘a!n!ng pomts of a different class | believe the plot is correct, but admittedly
A dll elhpse through 3 tl‘alnlng pOlntS Of the SAINC ClaSS the trend to have dips around points (See

attached plot for zoomed-in version) is
much noisier than with other metrics.

> Or is this possibly related to the fact that
over the entire circular trajectory through
three points from the same class, network
output never really changes?

| believe it is. | think it makes sense for the
change to be small relative to that along the
ellipse through three different points since
same-class points might be closer + their

4(0) /3 (point 1) T (po:int 2) 5/3 (pOiIlt 3) interpolations might lie closer to the data

manifold.
5




(2) Sensitivity and Generalization Factors

e Train (to 100% training
accuracy) two neural Example:
networks sharing the same Test error
architecture and

NNs w/ higher test error

optimization procedure but 5 [ vnen rined winaus o
differing in a single binary z rd

D 660
hyper-parameter. % &

© &

*a 5

e Compare the resulting test R
o . ; & S W/ Nl er.es error

error and sensitivity ¢ Jwhen trained wit

metrics.

w/ data augmentation



w/ random labels

Sensitivity and Generalization Factors
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Sensitivity and Generalization Factors

Data Augmentation

Generalization Gap Jacobian norm Transitions
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HardSigmoid

Sensitivity and Generalization Factors
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L-BFGS

Sensitivity and Generalization Factors

Full-batch optimization
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(3) Sensitivity and Generalization Gap

335671 networks were trained for 2'° steps with random hyper-parameters; if training did not com-
plete, a checkpoint at step 2'° was used instead, if available. When using L-BFGS, the maximum
number of iterations was set to 2684. The space of available hyper-parameters included’:

1. CIFARI10 and CIFAR100 datasets cropped to a 24 x 24 center region;
2. all 5 non-linearities from §A .4;

3. SGD, Momentum, ADAM (Kingma & Ba, 2014), RMSProp (Hinton et al., 2012) and L-
BFGS optimizers;

4. learning rates from {0.01,0.005,0.0005}, when applicable. Secondary coefficients were
fixed at default values of Tensorflow 1implementations of respective optimizers;

5. batch sizes of {128,512} (unless using L-BFGS with the full batch of 50000);

6. standard deviations of initial weights from {0.5, 1,4, 8} multiplied by the default value
described in A .5;

7. widths from {1, 2,4, .- ,216};
3. depths from {2, 3,5,-++,2° + 1};
9. true and random training labels;

10. random seeds from 1 to &.



Sensitivity and Generalization Gap
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Sensitivity and Generalization Gap

(Generalization gap

CIFARI10
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Sensitivity and Per-point Generalization

(Each point corresponds to a trained neural network evaluated at an individual test point)

MNIST CIFAR10
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Jacobian norm is predictive of the test loss for individual points
(see paper for detailed analysis).



Sensitivity and Per-point Generalization
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A.3 BOUNDING THE JACOBIAN NORM

Here we analyze the relationship between the Jacobian norm and the cross-entropy loss at individual
test points as studied in §

Target class Jacobian. We begin by relating the derivative of the target class probability J () to
per-point cross-entropy loss /(x) = —log [f5(x)], ;) (Where y(x) is the correct integer class).

We will denote f,(x) by o and drop the x argument to de-clutter notation (i.e. write f instead of
f(x)). Then the Jacobian can be expressed as

J=[(e1") o (1-017)"] (%) :

16

Published as a conference paper at ICLR 2018

where © is the Hadamard element-wise product. Then indexing both sides of the equation at the

correct class y yields
r [ Of
Jy=o0y((ey—0) T ) )

where e, is a vector of zeros everywhere except for e, = 1. Taking the norm of both sides results in

d 2 n 2
2 2 (Of of;
s =23 |a-a) (52 ) + 30 (w5) ®
k=1 J#y
d 2 n d 2
—|a-ar Y () + X2y () ®
Bf 2 n af 2
=02 |(1-0,? || 5% 2+§a§ |, @

We now assume that magnitudes of the individual logit derivatives vary little in between logits and
over the input space

2
13,115 = Moy | (1—0)* + 07|,

of |?

T
OxXiey

2
1
~ =
~ Kiest

n

ofi

oxT

)

F

2
which simplifies Equation “ to

J#Y
where M = Ey, 8f/8x£5‘”2F /n. Since o lies on the (n — 1)-simplex A"~!, under these assump-
tions we can bound: N
(- ‘Ty)2 2 2
ﬁ<§:aj <(170y) s
J#y
and finally
n 2 2 2
— lMag (1=0y)° £ I3yl £ 2Mo2 (1 —0y)°,
or, in terms of the cross-entropy loss [ = —log 0,:
M
Voo (e ™) S90S VEMe (1—e7). ©)
n—
‘We validate these approximate bounds in Figure (top).
Full Jacobian. Equation 5 establishes a close relationship between J, and loss [ = —log 7, but of

course, at test time we do not know the target class y. This allows us to only bound the full Jacobian
norm from below:
nM

n—1

e (1—e ™) Syl < 15 )

For the upper bound, we assume the maximum-entropy case of oy: 0; ~ (1 — oy)/(n — 1), for
i # y. The Jacobian norm is

n n
2 2 2 2
1305 = D 13allz = 13,05 + D 1315,
i=1

i#y

3In the limit of infinite width, and fully Bayesian training, deep network logits are distributed exactly ac-
cording to a Gaussian process (Neal, 1994; Lee et al., 2018). Similarly, each entry in the logit Jacobian also
corresponds to an independent draw from a Gaussian process (Solak et al., 2003). It is therefore plausible that
the Jacobian norm, consisting of a sum over the square of independent Gaussian samples in the correct limits,
will tend towards a constant.

Published as a conference paper at ICLR 2018

where the first summand becomes:

2
l1—o0 Mn
HJy”;zMU; {(1—0y)2+(n—1) (T—ly) } = 2(1—(71,)27

and each of the others

iz (L)’ {(1 =) (”5“”2) (lnol)ﬂ
M

:m(lfay)2 (n0§+n72)2.

Adding n — 1 of such summands to ||J y||§ results in

13 - = ﬂ(1 —oy)y /20 +n—-2= (ﬂ (1-e)Vne2+n-2 (7

(n—-1) n—1)

compared against the lower bound (Equation 0) and experimental data in Figure

L — e
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We validate these approximate bounds in Figure App. 11 (top).

Full Jacobian. Equation 5 establishes a close relationship between J, and loss [ = —log 7, but of
course, at test time we do not know the target class y. This allows us to only bound the full Jacobian
norm from below:
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For the upper bound, we assume the maximum-entropy case of oy: 0; ~ (1 — oy)/(n — 1), for
i # y. The Jacobian norm is

n n
2 2 2 2
1305 = D 13allz = 13,05 + D 1315,
i=1

i#y

3In the limit of infinite width, and fully Bayesian training, deep network logits are distributed exactly ac-
cording to a Gaussian process (Neal, 1994; Lee et al., 2018). Similarly, each entry in the logit Jacobian also
corresponds to an independent draw from a Gaussian process (Solak et al., 2003). It is therefore plausible that
the Jacobian norm, consisting of a sum over the square of independent Gaussian samples in the correct limits,
will tend towards a constant.
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cording to a Gaussian process (Neal, 1994; Lee et al., 2018). Similarly, each entry in the logit Jacobian also
corresponds to an independent draw from a Gaussian process (Solak et al., 2003). It is therefore plausible that 1 11
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where the first summand becomes:
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Adding n — 1 of such summands to ||J y||§ results in

\|J||Fz(T;/_Ml)(pay)\/m:%(ke*l)m, ) CrOSS-CntrOpy IOSS

compared against the lower bound (Equation 0) and experimental data in Figure App.| 1.
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Conclusion

e Trained NNs implement functions that are
significantly more stable around the training
data manifold than away from It.

e Jacobian norm of a trained NN evaluated at
test points is predictive of test error.



ldeas for future work?



