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Outline

* Some concepts of attention In
psychology/neuroscience and how they relate
to machine learning

* Using convolutional neural networks to
understand feature-based attention in the brain

* Making CNNs more biologically realistic
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1. Attention in neuroscience and psychology

2. Attention in machine learning, with similarities to
biological attention indicated

3. Ideas for future interaction between artificial and
biological attention



Attention: the ability to flexibly
control limited computational
resources



Attention as overall arousal
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Attention as overall arousal
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Saccades

* Small eye movements made several times
per second

Fig. 1. Huey’s [10] lever device to record horizontal eye movements. a Eye movements
made during reading were recorded with this technique; from Huey [11]. b The tracing on the
smoked drum was photographed and then engraved; from Wade et al. [1].

Eggert, 2007



Saccades

* “Overt spatial attention”; limited
computational resource, controlled flexibly

Eye trajectories measured by Yarbus by viewers carrying out different tasks. (a) No specific task. (b)
Estimate the wealth of the family. (c) Give the ages of the people in the painting. (d) Summarize what the
family had been doing before the arrival of the “unexpected visitor”. (€) Remember the clothes worn by the
people. (f) Remember the position of the people and objects in the room. (g) Estimate how long the
“unexpected visitor” had been away from the family. Image adapted from Yarbus (1967)



Covert Spatial Attention
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Covert Spatial Attention
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Neural activity is modulated based on preferred spatial location
(red lines = attending into a cell’s receptive field, blue line=outside)

Buffalo et al., 2010



"Hara” Spatial Attention



"Hara” Spatial Attention

* Train a recurrent CNN

with reinforcement
earning to select image
regions for further
nrocessing

Mnih, et al., 2014
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“Soft” spatial attention

* |terative reweighting of hidden layer activity, can be
trained with backprop

-~
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1.Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation

“Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, Xu et al., 2015
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Covert feature-based attention
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How can we explore the
connection between the
neural changes that
accompany attention and
performance changes?



Connecting Neural Changes with Performance Changes
Using Convolutional Neural Networks
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Connecting Neural Changes with Performance Changes
Using Convolutional Neural Networks
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Connecting Neural Changes with Performance Changes
Using Convolutional Neural Networks
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Covert feature-based attention enhances
performance in challenging detection tasks
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Test Images
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VGG-16
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Neural Correlates of Attention



Neural Correlates of Attention
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*Feature-based attention is spatially global



Neural Correlates of Attention

* “Feature Similarity Gain Model”:
Increased firing rate for preferred
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Modeling Attention

* Replicating the “feature similarity gain
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Do neural manipulations like
those observed biologically
enhance performance?
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How should activity be modulated?
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How should activity be modulated?
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How should activity be modulated?
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How should activity be modulated?
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How should activity be modulated?
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How should activity be modulated?
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Soft feature attention

* “Deep Networks with Internal Selective Attention
through Feedback Connections”, Stollenga, et al.
2014
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A more biologically detailed
approach

New Results ¢ Comment on this paper

A simple circuit model of visual cortex explains neural and behavioral aspects of

attention

Grace W. Lindsay, Daniel B. Rubin, Kenneth D. Miller

doi: https://doi.org/10.1101/2019.12.13.875534
This article is a preprint and has not been certified by peer review [what does this mean?].
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A more biologically detailed

Performance

approach
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Summary

* The feature similarity gain model of attention Is
effective at enhancing performance in CNNs

* Calculating how attention should modulate activity
(‘gradient values’) leads to better performance

* \Whether the brain Is using tuning or gradient

values Is u
e A more bio

nclear

ogically-detailed model can replicate

these findings
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