
Towards
General Purpose

Learned Optimizers
Luke Metz (@Luke_Metz)

Outline
1. Motivation

2. Problem Setup

3. Task specific learned optimizers

4. General purpose learned optimizers

5. Future

Outline
1. Motivation

2. Problem Setup

3. Task specific learned optimizers

4. General purpose learned optimizers

5. Future

Deep learning

LeNet (LeCun et. al. 1998)
AlexNet (Krizhevsky et. al. 2012)

learning featuresengineering features
SIFT (Lowe et. al. 1999)
HOG (Dalal et. al. 2005)

Deep learning

Learning To Learn (Hochreiter et. al. 2001)
Learned Optimizers (Andrychowicz et. al.
dd2016, Li et. al. 2016, Wichrowska et. al.
dd2017, Metz et. al. 2018, 2019)

LeNet (LeCun et. al. 1998)
AlexNet (Krizhevsky et. al. 2012)

learning features

Meta learning

learning to learn

engineering features

engineering to learn

SIFT (Lowe et. al. 1999)
HOG (Dalal et. al. 2005)

SGD (Robbins et. al. 1951, Bottou 2010)
Autoencoders (Hinton et. al. 2006)

Design at a higher level of abstraction

Existing methods

Currently:

● Meta-Learning ≈ few-shot learning
● Many do not generalize!

○ Trained and tested on narrow task distributions
○ Not flexible, will not generalize
○ Not general purpose tools

Goal: generalizable, reusable, robust learned learning algorithms

Trained once, applicable everywhere, no tuning necessary

Learned optimizer research
Optimizer

● Among the most widely used methods in ML++
● Current methods are hand designed
● Perfect test beds for meta-learning

○ Simple API -- gradients in, weight updates out

Outline
1. Motivation

2. Problem Setup

3. Task specific learned optimizers

4. General purpose learned optimizers

5. Future

Measure
performance

Measure
performance

Measure
performance

Update

Measure
performance

Update

Measure
performance

Update

Update

Update

O
ut

er
-t

ra
in

in
g.

 M
et

a-
Tr

ai
ni

ng
. U

pd
at

e
Measure
performance

Update

Update

Update

Inner-training. Given update rule parameters , update Measure
performance

Update

Update

Update

O
ut

er
-t

ra
in

in
g.

 M
et

a-
Tr

ai
ni

ng
. U

pd
at

e

Find weights
of learned optimizer

Application of
learned optimizer

Measure of performance

Distribution of tasks

Find weights
of learned optimizer

Application of
learned optimizer

Measure of performance

Distribution of tasks

Measurement of optimizer performance

● Target the objective we care about

Measurement of optimizer performance

Optimize our optimizer for:

● Training loss?

Measurement of optimizer performance

Optimize our optimizer for:

● Training loss?
● Validation loss?

Measurement of optimizer performance

Optimize our optimizer for:

● Training loss?
● Validation loss?
● Performance on different distributions?

○ e.g. for robustness / out of distribution generalization?

Find weights
of learned optimizer

Application of
learned optimizer

Measure of performance

Distribution of tasks

Parametric update (U): Per parameter NN

LSTM / MLPgradient Δw

Operates on [n_parameters, 1]

Andrychowicz, Marcin, et al.
"Learning to learn by gradient
descent by gradient descent."
Neurips. 2016.

Metz, Luke, et al.
"Understanding and
correcting pathologies in the
training of learned
optimizers." ICML 2019

Parametric update (U): Per parameter NN

LSTM / MLPgradient Δw

Operates on [n_parameters, 1]

Andrychowicz, Marcin, et al.
"Learning to learn by gradient
descent by gradient descent."
Neurips. 2016.

Metz, Luke, et al.
"Understanding and
correcting pathologies in the
training of learned
optimizers." ICML 2019

For each target model
weight matrix.

Shape of gradient: [n, m]

Reshape gradient:
[n*m, 1]

Apply the same
network on batch:

Input: size 1
Output: size 1

Reshape [n, m] and
apply weight

update

Find weights
of learned optimizer

Application of
learned optimizer

Measure of performance

Distribution of tasks

Distribution of tasks

● Defines the types of tasks learned optimizer performs well on.

● No free lunch for optimization

○ All possible tasks --> no gains

○ Narrow distribution -> more gains

Find weights
of learned optimizer

Application of
learned optimizer

Measure of performance

Distribution of tasks

Outer-optimization is hard

● Expensive to compute a single outer-function evaluation

● Outer-function evaluations are noisy

● Outer-function is complex [U(U(U(U(.....))))]

Meta-learning based approaches: limited success & require specialized "tricks"

Outer Training Methods

Black box

○ Random search
○ Hyperparameter optimization
○ Reinforcement learning
○ Evolution

Outer Training Methods

Black box

○ Random search
○ Hyperparameter optimization
○ Reinforcement learning
○ Evolution

Gradients

Whole training process is differentiable

● U(U(U...;θ);θ);θ)

"Unroll" optimization -> compute gradients -> SGD

Truncated Backpropagation Through Time

● Split sequence into multiple pieces

w0 w1 w2

outer-loss

w3 w4 w5

outer-loss

w6 w7 w8

outer-loss

No
bac

kp
ro

p

No
bac

kp
ro

p

Truncated Backpropagation Through Time

● Split sequence into multiple pieces

● More gradients (one computed per truncation)
● Better behaved loss surface

w0 w1 w2

outer-loss

w3 w4 w5

outer-loss

w6 w7 w8

outer-loss

No
bac

kp
ro

p

No
bac

kp
ro

p

Truncated Backpropagation Through Time

● Split sequence into multiple pieces

● More gradients (one computed per truncation)
● Better behaved loss surface
● Biased!

w0 w1 w2

outer-loss

w3 w4 w5

outer-loss

w6 w7 w8

outer-loss

No
bac

kp
ro

p

No
bac

kp
ro

p

Conflicting Goals in Unroll Lengths

● Long unroll steps per truncation
○ Less biased
○ Each iteration is slower
○ Horrible loss surface -> exploding gradients

● Short unroll steps per truncation
○ Fast to train
○ Well behaved loss surfaces
○ More biased

Evolutionary Strategies / Variational optimization

● Define a distribution over learned optimizer parameters
● Optimize the parameters of this distribution

Parameters of the
distribution Original lossSample from

distribution

Two unbiased gradient estimators

Evolutionary Strategies (ES)
Score Function

Two unbiased gradient estimators

Evolutionary Strategies (ES)
Score Function

Reparameterization Gradient (RP)

Different gradient variance

● Smooth loss surface -> reparameterization has lower variance
● High curvature loss surface -> ES has lower variance

Different gradient variance

● Smooth loss surface -> reparameterization has lower variance
● High curvature loss surface -> ES has lower variance

ES

Reparam Grad

ES

Reparam Grad

Different gradient variance

● Smooth loss surface -> reparameterization has lower variance
● High curvature loss surface -> ES has lower variance

Outline
1. Motivation

2. Problem Setup

3. Task specific learned optimizers

4. General purpose learned optimizers

5. Future

Task specific learned optimizers

● Is research into learned optimizers worth it?

Task specific learned optimizers

● Is research into learned optimizers worth it?

Evolutionary strategies +
backoprop gradients

Per Param MLP optimizer
for 10k iterations

Training and Validation loss

10 way classification problems sampled
from imagenet
small 3 hidden layer convnet

Outer-test example problem

Outer-test example problem

Outer-test example problem

Outline
1. Motivation

2. Problem Setup

3. Task specific learned optimizers

4. General purpose learned optimizers

5. Future

General purpose == Out of distribution generalization

● Works out-the-box on new tasks
● No tuning necessary

Out of distribution generalization

Convnet ---> Fully connected

Out of distribution generalization

Convnet ---> Fully connected Imagenet ---> Mnist

Training on 1 task....

Training on 1 task....

Let's 5,000x that

TaskSet: A dataset of tasks

Samplers Config Code

Sampling tasks

● Image supervised
○ MLP classification
○ Conv with FC last
○ Conv pooling

● Image unsupervised
○ MLP autoencoders
○ MLP variational autoencoders
○ Non volume preserving flows
○ Masked autoregressive

● Language supervised
○ RNN text classification

● Language unsupervised
○ Character language modeling RNN
○ Word language modeling RNN

● Synthetic
○ Set of synthetic tasks from Wichrowska

2017 et. al.
○ Quadratic tasks possibly with

nonlinearity

Outer-generalization to new tasks is key

● Ideally we train on the problems we care
about (e.g. large ResNets).

○ This is too expensive! Have to make trade offs.

Normalization of tasks

● Wildly different loss scales across problem
● Need to normalize so each task has same "weight"

Normalization of tasks

● Wildly different loss scales across problem
● Need to normalize so each task has same "weight"

● Train task with Adam in different configurations
● Linearly interpolate between initial loss (1.0) and the lowest loss (0.0)
● Clip between (-2, 2)

Hypothesis: More tasks leads to better training

A
gg

re
ga

te
 g

en
er

al
iz

at
io

n
pe

rfo
rm

an
ce

Hypothesis: Outer-training on a diverse set of
tasks will allow our learned optimizers to
generalize to larger problems.

Improved Learned Optimizer
Architectures

Architectures: Per parameter NN based update rules

gradient
momentum
time step
.....

1 hidden layer
32 unit MLP Δw

LSTMgradient Δw

Andrychowicz, Marcin, et al.
"Learning to learn by gradient
descent by gradient descent."
Neurips. 2016.

Metz, Luke, et al.
"Understanding and
correcting pathologies in the
training of learned
optimizers." ICML 2019

Operates on [n_parameters, 1]

Architecture: Hierarchical

gradient
momentum
time step
.....

1 hidden layer
32 unit MLP Δw

LSTMgradient norm
loss values
....

Similar to:
Wichrowska, Olga, et al. "Learned
optimizers that scale and
generalize." ICML 2017.

Per parameter

Per te
nsor

Architecture: Hierarchical

gradient
momentum
time step
.....

1 hidden layer
32 unit MLP Δw

LSTMgradient norm
loss values
....

Similar to:
Wichrowska, Olga, et al. "Learned
optimizers that scale and
generalize." ICML 2017.

Per parameter

Per te
nsor

Train and validation
losses to enable dynamic
regularization

Improved architectures train faster

Task specific learned
optimizers

~1k CPU cores for
~5 days

General purpose
learned optimizers

~20k-40k CPU cores for
~4 weeks

Compute / Outer Optimization

Learning to learn by
gradient descent by
gradient descent

1 GPU
< 1 day (?)

Things are starting to get interesting!

How does it do?

● Comparing optimizers: hard
● Comparing learned optimizers: EXTRA HARD

How does it do?

● Comparing optimizers: hard
● Comparing learned optimizers: EXTRA HARD

Distribution of IID problems (usual train / test performance)

Out of distribution

Performance on IID train / test

Performance on IID train / test

Performance on IID train / test

Performance on IID train / test

Controlled out of distribution

Controlled out of distribution

Large Image model transfer

14 layer ResNet on CIFAR-10

Large Image model transfer

14 layer ResNet on CIFAR-10 34 layer ResNet on Imagenet

Training new learned optimizers

This is almost to the point where I would want to use this for my research.

Learned, implicit regularization

Outline
1. Motivation

2. Problem Setup

3. Task specific learned optimizers

4. General purpose learned optimizers

5. Future

● Too expensive

○ prototype model that runs on TPU promising

● More reliable, better generalization

● More power -- get more performance out of optimizers

○ With better features? Second order?

○ Better models?

Make learned optimizers more accessible

● I believe we are at the brink of an "AlexNet" like moment

● Learned optimizers are almost usable to me in my own research

● Optimizers are just the beginning

Future of learned learning algorithms

Daniel
Freeman

Ruoxi
Sun

Ben
Poole

Jeremy
Nixon

Jascha
Sohl-Dickstein

Niru
Maheswaranathan

My Awesome Collaborators

Thanks!

Questions + Discussion?

