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Deep learning

LeNet (LeCun et. al. 1998)
AlexNet (Krizhevsky et. al. 2012)

learning featuresengineering features
SIFT (Lowe et. al. 1999)
HOG (Dalal  et. al. 2005)



Deep learning

Learning To Learn (Hochreiter et. al. 2001)
Learned Optimizers (Andrychowicz et. al.    
dd2016, Li et. al. 2016, Wichrowska et. al. 
dd2017, Metz et. al. 2018, 2019)

LeNet (LeCun et. al. 1998)
AlexNet (Krizhevsky et. al. 2012)

learning features

Meta learning

learning to learn

engineering features

engineering to learn

SIFT (Lowe et. al. 1999)
HOG (Dalal  et. al. 2005)

SGD (Robbins  et. al. 1951, Bottou 2010)
Autoencoders (Hinton et. al. 2006)



Design at a higher level of abstraction



Existing methods

Currently:

● Meta-Learning ≈ few-shot learning
● Many do not generalize!

○ Trained and tested on narrow task distributions
○ Not flexible, will not generalize
○ Not general purpose tools

Goal: generalizable, reusable, robust learned learning algorithms

Trained once, applicable everywhere, no tuning necessary



Learned optimizer research
Optimizer

● Among the most widely used methods in ML++
● Current methods are hand designed
● Perfect test beds for meta-learning

○ Simple API -- gradients in, weight updates out
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Measurement of optimizer performance

● Target the objective we care about



Measurement of optimizer performance

Optimize our optimizer for:

● Training loss?



Measurement of optimizer performance

Optimize our optimizer for:

● Training loss?
● Validation loss?



Measurement of optimizer performance

Optimize our optimizer for:

● Training loss?
● Validation loss?
● Performance on different distributions?

○ e.g. for robustness / out of distribution generalization?
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Parametric update (U): Per parameter NN

LSTM / MLPgradient Δw

Operates on [n_parameters, 1]

Andrychowicz, Marcin, et al. 
"Learning to learn by gradient 
descent by gradient descent." 
Neurips. 2016.

Metz, Luke, et al. 
"Understanding and 
correcting pathologies in the 
training of learned 
optimizers." ICML 2019



Parametric update (U): Per parameter NN

LSTM / MLPgradient Δw

Operates on [n_parameters, 1]

Andrychowicz, Marcin, et al. 
"Learning to learn by gradient 
descent by gradient descent." 
Neurips. 2016.

Metz, Luke, et al. 
"Understanding and 
correcting pathologies in the 
training of learned 
optimizers." ICML 2019

For each target model 
weight matrix.

Shape of gradient: [n, m]

Reshape gradient:
[n*m, 1]

Apply the same
network on batch:

Input: size 1
Output: size 1

Reshape [n, m] and 
apply weight 

update
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Distribution of tasks

● Defines the types of tasks learned optimizer performs well on.

● No free lunch for optimization

○ All possible tasks --> no gains

○ Narrow distribution -> more gains
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Outer-optimization is hard

● Expensive to compute a single outer-function evaluation

● Outer-function evaluations are noisy

● Outer-function is complex [U(U(U(U(.....))))]

Meta-learning based approaches: limited success & require specialized "tricks"



Outer Training Methods

Black box

○ Random search
○ Hyperparameter optimization
○ Reinforcement learning
○ Evolution



Outer Training Methods

Black box

○ Random search
○ Hyperparameter optimization
○ Reinforcement learning
○ Evolution

Gradients

Whole training process is differentiable

● U(U(U...;θ);θ);θ)

"Unroll" optimization -> compute gradients -> SGD



Truncated Backpropagation Through Time
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● More gradients (one computed per truncation)
● Better behaved loss surface
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Truncated Backpropagation Through Time

● Split sequence into multiple pieces

● More gradients (one computed per truncation)
● Better behaved loss surface
● Biased!

w0 w1 w2

outer-loss

w3 w4 w5

outer-loss

w6 w7 w8

outer-loss

No 
bac

kp
ro

p

No 
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Conflicting Goals in Unroll Lengths

● Long unroll steps per truncation
○ Less biased
○ Each iteration is slower
○ Horrible loss surface -> exploding gradients

● Short unroll steps per truncation
○ Fast to train
○ Well behaved loss surfaces
○ More biased

  

        





Evolutionary Strategies / Variational optimization

● Define a distribution over learned optimizer parameters
● Optimize the parameters of this distribution

Parameters of the 
distribution Original lossSample from 

distribution



Two unbiased gradient estimators

Evolutionary Strategies (ES)
Score Function



Two unbiased gradient estimators

Evolutionary Strategies (ES)
Score Function

Reparameterization Gradient (RP)



Different gradient variance

● Smooth loss surface -> reparameterization has lower variance
● High curvature loss surface -> ES has lower variance



Different gradient variance

● Smooth loss surface -> reparameterization has lower variance
● High curvature loss surface -> ES has lower variance

ES

Reparam Grad



ES

Reparam Grad

Different gradient variance

● Smooth loss surface -> reparameterization has lower variance
● High curvature loss surface -> ES has lower variance
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Task specific learned optimizers

● Is research into learned optimizers worth it?



Task specific learned optimizers

● Is research into learned optimizers worth it?

Evolutionary strategies + 
backoprop gradients

Per Param MLP optimizer 
for 10k iterations

Training and Validation loss

10 way classification problems sampled 
from imagenet
small 3 hidden layer convnet



Outer-test example problem



Outer-test example problem



Outer-test example problem
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General purpose == Out of distribution generalization

● Works out-the-box on new tasks
● No tuning necessary



Out of distribution generalization

Convnet ---> Fully connected



Out of distribution generalization

Convnet ---> Fully connected Imagenet ---> Mnist



Training on 1 task....



Training on 1 task....

Let's 5,000x that



TaskSet: A dataset of tasks



Samplers Config Code



Sampling tasks

● Image supervised
○ MLP classification
○ Conv with FC last
○ Conv pooling

● Image unsupervised
○ MLP autoencoders
○ MLP variational autoencoders
○ Non volume preserving flows
○ Masked autoregressive

● Language supervised
○ RNN text classification

● Language unsupervised
○ Character language modeling RNN
○ Word language modeling RNN

● Synthetic
○ Set of synthetic tasks from Wichrowska 

2017 et. al.
○ Quadratic tasks possibly with 

nonlinearity



Outer-generalization to new tasks is key

● Ideally we train on the problems we care 
about (e.g. large ResNets).

○ This is too expensive! Have to make trade offs.



Normalization of tasks

● Wildly different loss scales across problem
● Need to normalize so each task has same "weight"



Normalization of tasks

● Wildly different loss scales across problem
● Need to normalize so each task has same "weight"

● Train task with Adam in different configurations
● Linearly interpolate between initial loss (1.0) and the lowest loss (0.0)
● Clip between (-2, 2)



Hypothesis: More tasks leads to better training
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Hypothesis: Outer-training on a diverse set of 
tasks will allow our learned optimizers to 
generalize to larger problems.



Improved Learned Optimizer 
Architectures



Architectures: Per parameter NN based update rules

gradient
momentum
time step
.....

1 hidden layer
32 unit MLP Δw

LSTMgradient Δw

Andrychowicz, Marcin, et al. 
"Learning to learn by gradient 
descent by gradient descent." 
Neurips. 2016.

Metz, Luke, et al. 
"Understanding and 
correcting pathologies in the 
training of learned 
optimizers." ICML 2019

Operates on [n_parameters, 1]



Architecture: Hierarchical

gradient
momentum
time step
.....

1 hidden layer
32 unit MLP Δw

LSTMgradient norm
loss values
....

Similar to:
Wichrowska, Olga, et al. "Learned 
optimizers that scale and 
generalize." ICML 2017.

Per parameter

Per te
nsor



Architecture: Hierarchical

gradient
momentum
time step
.....

1 hidden layer
32 unit MLP Δw

LSTMgradient norm
loss values
....

Similar to:
Wichrowska, Olga, et al. "Learned 
optimizers that scale and 
generalize." ICML 2017.

Per parameter

Per te
nsor

Train and validation 
losses to enable dynamic 
regularization



Improved architectures train faster



Task specific learned 
optimizers

~1k CPU cores for
~5 days 

General purpose 
learned optimizers

~20k-40k CPU cores for
~4 weeks 

Compute / Outer Optimization

Learning to learn by 
gradient descent by 
gradient descent

1 GPU
< 1 day (?)



Things are starting to get interesting!



How does it do?

● Comparing optimizers: hard
● Comparing learned optimizers: EXTRA HARD



How does it do?

● Comparing optimizers: hard
● Comparing learned optimizers: EXTRA HARD

Distribution of IID problems (usual train / test performance)

Out of distribution



Performance on IID train / test



Performance on IID train / test



Performance on IID train / test



Performance on IID train / test



Controlled out of distribution



Controlled out of distribution



Large Image model transfer

14 layer ResNet on CIFAR-10



Large Image model transfer

14 layer ResNet on CIFAR-10 34 layer ResNet on Imagenet



Training new learned optimizers

This is almost to the point where I would want to use this for my research.



Learned, implicit regularization
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● Too expensive

○ prototype model that runs on TPU promising

● More reliable, better generalization

● More power -- get more performance out of optimizers

○ With better features? Second order?

○ Better models?

Make learned optimizers more accessible



● I believe we are at the brink of an "AlexNet" like moment

● Learned optimizers are almost usable to me in my own research

● Optimizers are just the beginning

Future of learned learning algorithms
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Thanks!

Questions + Discussion?


