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Offline RL: A Data-Driven RL Paradigm



Offline RL: Then and Now

● (Then) Offline RL was previously known as “Batch RL”. 
○ Our paper was the first to use the term “offline RL”  and popularize it!

● (Then) ICLR’20 review: “Why are offline algorithms necessary? I am not sure this paper is 
relevant to the community of standard RL.” 

○ Eventually, accepted at ICML’20.

● (Now) Organizing 1st  offline RL workshop at NeurIPS 2020 - offline-rl-neurips.github.io
○ 50+ accepted papers at the workshop
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https://offline-rl-neurips.github.io/
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Offline RL on Atari 2600
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Talk



What makes Deep Learning Successful?
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How to make Deep RL similarly successful?
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How to make Deep RL similarly successful?
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Interactive EnvironmentsExpressive function 
approximators

Good learning algorithms e.g., 
actor-critic, approx DP Active Data Collection



RL for Real-World: RL with Large Datasets
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[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .. Finn. RoboNet: Large-Scale Multi-Robot Learning.
[2] Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell. BDD100K: A Large-scale Diverse Driving Video Database. 

RoboNet

Robotics
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[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .., Finn. RoboNet: Large-Scale Multi-Robot Learning.
[2] Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell. BDD100K: A Large-scale Diverse Driving Video Database. 

RoboNet

Robotics

Recommender Systems

Autonomous Driving



RL for Real-World: RL with Large Datasets
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[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .. Finn. RoboNet: Large-Scale Multi-Robot Learning.
[2] Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell. BDD100K: A Large-scale Diverse Driving Video Database. 

RoboNet

Robotics

Recommender Systems

Self-Driving Cars
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Offline RL: A Data-Driven RL Paradigm
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Offline RL: A Data-Driven RL Paradigm

Offline RL can help:

● Pretrain the agents on existing 
logged data.

● Evaluate RL algorithms on the basis 
of exploitation alone on common 
datasets.

● Deliver real-world 
impact.
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But .. Offline RL is Challenging!

Distribution mismatch
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But .. Offline RL is Challenging!

No New Corrective Feedback
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But .. Offline RL is Challenging!

Bootstrapping 
(Learning guess from a guess)

Function 
Approximation

Fully Off-Policy
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Standard RL fails in the Offline setting?



P 25An Optimistic Perspective on Offline Reinforcement Learning

Standard RL fails in the Offline setting ..
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Can standard off-policy RL succeed in the offline setting?
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Offline RL on Atari 2600

Train 5 DQN (Nature) agents on 60 Atari games 
with sticky actions for 200 million frames.
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Offline RL on Atari 2600

Save all (observation, action, next observation, 
reward) tuples encountered to DQN Replay 
Dataset. Total of 300 datasets, 5 per game.
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Offline RL on Atari 2600

Train offline agents using DQN Replay Dataset 
without any further environment interactions.
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Offline DQN on DQN Replay Dataset
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Does Offline DQN work?

Worse than DQN

Better than DQN
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Distributional RL uses Z(s, a), a 
distribution over returns, 
instead of the Q-function.

Let's try recent off-policy methods!

Z(1/K) Z(K/K)

Shared Neural 
Network

Z(2/K)

QR-DQN

Actions

R
eturns
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Does Offline QR-DQN work?

Worse than DQN

Better than DQN
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Does Offline QR-DQN work?

Worse than DQN

Better than DQN
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○ Given a fixed dataset, generalize to unseen states during evaluation.
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Developing Robust Offline RL algorithms

➢ Emphasis on Generalization

○ Given a fixed dataset, generalize to unseen states during evaluation.

➢ Ensemble of Q-estimates:
 

○ Ensembling, Dropout widely used for improving generalization.
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Ensemble-DQN

Train multiple (linear) 
Q-estimates with 
different random 

initialization.
Shared Neural 

Network

Q1 Q2

Ensemble-DQN

QK

R
eturns

Actions Actions

..
Actions
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Does Offline Ensemble-DQN work?
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Offline DQN
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Developing Robust Offline RL algorithms

➢ Emphasis on Generalization
○ Given a fixed dataset, generalize to unseen states during evaluation.

➢ Q-learning as constraint satisfaction:
 

○
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Random Ensemble Mixture (REM)

Minimize TD error on 
random (per minibatch) 
convex combination of 
multiple Q-estimates.

𝛼2

REM

Random Combination

𝛼K

Shared Neural 
Network

Q1 Q2 QK

Actions R
eturns
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REM vs QR-DQN

𝛼2

REM

∑i ⍺i Qi

𝛼K

Shared Neural 
Network

Q1 Q2 QK

Actions R
eturns

Z(1/K) Z(K/K)

Shared Neural 
Network

Z(2/K)

QR-DQN

R
eturns
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Offline Stochastic Atari Results

Scores averaged over 5 runs of offline agents trained using DQN replay data across 60 Atari 
games for 5X gradient steps. Offline REM surpasses gains from online C51 and offline QR-DQN.

(2017)

(2013)
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Offline REM vs. Baselines
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Does Online REM work?

Average normalized scores of online agents trained for 200 million game frames. Multi-network 
REM with 4 Q-functions performs comparably to QR-DQN. 
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Important Factors in Offline RL
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Key Factor in Success: Offline Dataset Size

Randomly subsample N% of frames from 200 million 
frames for offline training.
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Key Factor in Success: Offline Dataset Diversity

Subsample first 10% of total frames (20 million) for offline 
training -- much lower quality data.
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Choice of Algorithm: Offline Continuous Control 

Offline agents trained using full experience replay of DDPG on MuJoCo 
environments. 



An Optimistic Perspective on Offline Reinforcement Learning

Overfitting in Offline RL: Number of 
Gradient Updates

Average online scores of offline agents trained on 5 games using logged DQN replay data for 5X 
gradient steps compared to online DQN.
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Overfitting Underfitting in Offline RL: Number of 
Gradient Updates

Reason: Implicit Regularization of gradient descent (“Preference for simpler solutions”) is 
amplified by bootstrapping  (learning a guess from guess) in RL.



Implicit Under-Parameterization in Deep RL
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Minimize 
TD Error

Qθ(s, a) Gradient Descent

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning. 2020.



Implicit Under-Parameterization in Deep RL
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TD Error

Qθ(s, a) Gradient Descent

Q-network implicitly behaves as 
low capacity network!

Low Capacity Neural Net

Kumar*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning. 2020.
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Offline RL for Robotics



Future Work

“The potential for off-policy learning remains tantalizing, 
the best way to achieve it still a mystery.”  - Sutton & Barto
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● Rigorous characterization of role of generalization in 
offline RL

Offline RL: Future Work
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● Rigorous characterization of role of generalization in offline RL

● Benchmarking with various data collection strategies
○ Subsampling DQN-replay datasets (e.g., first / last k million frames)

● Offline Evaluation / Hyperparameter Tuning

● Self-supervised / Model-based RL approaches

● Combining REM with behavior regularization (BCQ, 
SPIBB, CQL etc.)

Offline RL: Future Work
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● Standard RL algorithms (e.g. REM, QR-DQN), trained on 
sufficiently large and diverse datasets, perform quite 
well in the offline setting. 

● Offline RL provides a standardized setup for:
○ Isolating exploitation from exploration
○ Developing sample efficient and stable algorithms

○ Pretrain RL agents on logged data

TL;DR
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Code, dataset, blog and paper at

offline-rl.github.io

Thank you!

http://offline-rl.github.io

