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Which generalizes better: 

Bigger networks or smaller? 

More complex models or simpler models?
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TL;DR:

Sensitivity of a trained neural network 
to test inputs correlates with test error. 
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TL;DR:

1. Motivation / interpretation 
2. Sensitivity metrics 
3. Experimental results

Plan:

Sensitivity of a trained neural network 
to test inputs correlates with test error. 

(Generalization)



• Understanding neural networks (NNs);


• Regularizers;


Why Search for Correlates of 
Generalization?



• Model comparison:

Evidence Prior

P [H|D] / P [D|H]P [H]
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Figure App.10: Occam’s razor: simplified expectation vs hypothesized reality. All datasets D0 with
input and target dimensions matching those of a particular dataset D are sorted according to the
evidence P [D0|H] of a large model Hl from left to right along the horizontal axis. Left: a classic
simplified depiction of Bayesian Occam’s razor. Evidence P [D0|H] of a small model Hs with few
parameters has narrow support in the dataset space and is more peaked. If the model fits the dataset
D well, it falls close to the peak and outperforms a larger model Hl with more parameters, having
wider support. Right: suggested potential reality of neural networks. Evidence of the small model
Hs peaks higher, but the large model Hl might nonetheless concentrate the majority of probability
mass on simple functions and the evidence curves might intersect at a small angle. In this case,
while a dataset D lying close to the intersection can be fit by both models, the Bayesian evidence
ratio depends on its exact position with respect to the intersection.

nuanced as depicted in Figure App.10 (right), with the evidence ratio being highly dependent on the
particular dataset.

We interpret our work as defining hypothesis classes based on sensitivity of the hypothesis (which
yielded promising results in (Rasmussen & Ghahramani, 2000) on a toy task) and observing a
strongly non-uniform prior on these classes that enables model comparison. Indeed, at least in
the context of natural images classification, putting a prior on the number of parameters or Kol-
mogorov complexity of the hypothesis is extremely difficult. However, a statement that the true
classification function is robust to small perturbations in the input is much easier to justify. As such,
a prior P [H] in favor of robustness over sensitivity might fare better than a prior on specific network
hyper-parameters.

Above is one way to interpret the correlation between sensitivity and generalization that we observe
in this work. It does not explain why large networks tend to converge to less sensitive functions.
We conjecture large networks to have access to a larger space of robust solutions due to solving a
highly-underdetermined system when fitting a dataset, while small models converge to more extreme
weight values due to being overconstrained by the data. However, further investigation is needed to
confirm this hypothesis.

A.3 BOUNDING THE JACOBIAN NORM

Here we analyze the relationship between the Jacobian norm and the cross-entropy loss at individual
test points as studied in §4.4.

Target class Jacobian. We begin by relating the derivative of the target class probability Jy(x) to
per-point cross-entropy loss l(x) = � log [f�(x)]y(x) (where y(x) is the correct integer class).

We will denote f�(x) by � and drop the x argument to de-clutter notation (i.e. write f instead of
f(x)). Then the Jacobian can be expressed as

J =
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�1T

�
�
�
I � �1T

�T
i✓ @f

@xT

◆
,

16
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Evidence Prior
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Bigger Networks Generalize Better

(An Analysis of Deep Neural Network Models for Practical Applications

 by Alfredo Canziani, Adam Paszke, Eugenio Culurciello)

Historical trends of ImageNet competitions:

(radius ~ #parameters)

https://arxiv.org/abs/1605.07678
https://arxiv.org/find/cs/1/au:+Canziani_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Paszke_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Culurciello_E/0/1/0/all/0/1
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MNIST CIFAR10

(In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning

 by Behnam Neyshabur, Ryota Tomioka, Nathan Srebro)

Single hidden layer networks:

(H - number of hidden units)

Bigger Networks Generalize Better

https://arxiv.org/abs/1412.6614
https://arxiv.org/find/cs/1/au:+Neyshabur_B/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Tomioka_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Srebro_N/0/1/0/all/0/1
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Figure App.10: Occam’s razor: simplified expectation vs hypothesized reality. All datasets D0 with
input and target dimensions matching those of a particular dataset D are sorted according to the
evidence P [D0|H] of a large model Hl from left to right along the horizontal axis. Left: a classic
simplified depiction of Bayesian Occam’s razor. Evidence P [D0|H] of a small model Hs with few
parameters has narrow support in the dataset space and is more peaked. If the model fits the dataset
D well, it falls close to the peak and outperforms a larger model Hl with more parameters, having
wider support. Right: suggested potential reality of neural networks. Evidence of the small model
Hs peaks higher, but the large model Hl might nonetheless concentrate the majority of probability
mass on simple functions and the evidence curves might intersect at a small angle. In this case,
while a dataset D lying close to the intersection can be fit by both models, the Bayesian evidence
ratio depends on its exact position with respect to the intersection.

nuanced as depicted in Figure App.10 (right), with the evidence ratio being highly dependent on the
particular dataset.

We interpret our work as defining hypothesis classes based on sensitivity of the hypothesis (which
yielded promising results in (Rasmussen & Ghahramani, 2000) on a toy task) and observing a
strongly non-uniform prior on these classes that enables model comparison. Indeed, at least in
the context of natural images classification, putting a prior on the number of parameters or Kol-
mogorov complexity of the hypothesis is extremely difficult. However, a statement that the true
classification function is robust to small perturbations in the input is much easier to justify. As such,
a prior P [H] in favor of robustness over sensitivity might fare better than a prior on specific network
hyper-parameters.

Above is one way to interpret the correlation between sensitivity and generalization that we observe
in this work. It does not explain why large networks tend to converge to less sensitive functions.
We conjecture large networks to have access to a larger space of robust solutions due to solving a
highly-underdetermined system when fitting a dataset, while small models converge to more extreme
weight values due to being overconstrained by the data. However, further investigation is needed to
confirm this hypothesis.

A.3 BOUNDING THE JACOBIAN NORM

Here we analyze the relationship between the Jacobian norm and the cross-entropy loss at individual
test points as studied in §4.4.

Target class Jacobian. We begin by relating the derivative of the target class probability Jy(x) to
per-point cross-entropy loss l(x) = � log [f�(x)]y(x) (where y(x) is the correct integer class).

We will denote f�(x) by � and drop the x argument to de-clutter notation (i.e. write f instead of
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Why Sensitivity?

• Can reasonably assume a prior            in 

favor of robustness to small perturbations in 
the inputs.


• Many regularization / adversarial defense 
strategies employ sensitivity to inputs.


• Can be computed independently of 
parametrization.

P [H]
<latexit sha1_base64="YuojYbgbRaDG3GD64pGXEBhfsr0=">AAACHnicbVC7TsMwFHXKq5RXgJElokViqpIuMFawdCwSfUhNVNmu01p1HrJvkKooP8BX8Ams8AFsiBVmfgQnzQAtR7J07jn36l4fEguuwLa/jMrG5tb2TnW3trd/cHhkHp/0VZRIyno0EpEcEqyY4CHrAQfBhrFkOCCCDcj8NvcHD0wqHoX3sIiZF+BpyH1OMWhpbDYaboBhRkjazVzBfBgVNcUi7WSu5NMZeI2xWbebdgFrnTglqaMS3bH57U4imgQsBCqwUiPHjsFLsQROBctqbqJYjOkcT9lI0xAHTHlp8ZvMutDKxPIjqV8IVqH+nkhxoNQiILozP1Wtern4r0dIsLIa/Gsv5WGcAAvpcrOfCAsiK8/KmnDJKIiFJphKro+36AxLTEEnWtOpOKsZrJN+q+nYTeeuVW/flPlU0Rk6R5fIQVeojTqoi3qIokf0jF7Qq/FkvBnvxseytWKUM6foD4zPH85Hoyg=</latexit><latexit sha1_base64="YuojYbgbRaDG3GD64pGXEBhfsr0=">AAACHnicbVC7TsMwFHXKq5RXgJElokViqpIuMFawdCwSfUhNVNmu01p1HrJvkKooP8BX8Ams8AFsiBVmfgQnzQAtR7J07jn36l4fEguuwLa/jMrG5tb2TnW3trd/cHhkHp/0VZRIyno0EpEcEqyY4CHrAQfBhrFkOCCCDcj8NvcHD0wqHoX3sIiZF+BpyH1OMWhpbDYaboBhRkjazVzBfBgVNcUi7WSu5NMZeI2xWbebdgFrnTglqaMS3bH57U4imgQsBCqwUiPHjsFLsQROBctqbqJYjOkcT9lI0xAHTHlp8ZvMutDKxPIjqV8IVqH+nkhxoNQiILozP1Wtern4r0dIsLIa/Gsv5WGcAAvpcrOfCAsiK8/KmnDJKIiFJphKro+36AxLTEEnWtOpOKsZrJN+q+nYTeeuVW/flPlU0Rk6R5fIQVeojTqoi3qIokf0jF7Qq/FkvBnvxseytWKUM6foD4zPH85Hoyg=</latexit><latexit sha1_base64="YuojYbgbRaDG3GD64pGXEBhfsr0=">AAACHnicbVC7TsMwFHXKq5RXgJElokViqpIuMFawdCwSfUhNVNmu01p1HrJvkKooP8BX8Ams8AFsiBVmfgQnzQAtR7J07jn36l4fEguuwLa/jMrG5tb2TnW3trd/cHhkHp/0VZRIyno0EpEcEqyY4CHrAQfBhrFkOCCCDcj8NvcHD0wqHoX3sIiZF+BpyH1OMWhpbDYaboBhRkjazVzBfBgVNcUi7WSu5NMZeI2xWbebdgFrnTglqaMS3bH57U4imgQsBCqwUiPHjsFLsQROBctqbqJYjOkcT9lI0xAHTHlp8ZvMutDKxPIjqV8IVqH+nkhxoNQiILozP1Wtern4r0dIsLIa/Gsv5WGcAAvpcrOfCAsiK8/KmnDJKIiFJphKro+36AxLTEEnWtOpOKsZrJN+q+nYTeeuVW/flPlU0Rk6R5fIQVeojTqoi3qIokf0jF7Qq/FkvBnvxseytWKUM6foD4zPH85Hoyg=</latexit><latexit sha1_base64="YuojYbgbRaDG3GD64pGXEBhfsr0=">AAACHnicbVC7TsMwFHXKq5RXgJElokViqpIuMFawdCwSfUhNVNmu01p1HrJvkKooP8BX8Ams8AFsiBVmfgQnzQAtR7J07jn36l4fEguuwLa/jMrG5tb2TnW3trd/cHhkHp/0VZRIyno0EpEcEqyY4CHrAQfBhrFkOCCCDcj8NvcHD0wqHoX3sIiZF+BpyH1OMWhpbDYaboBhRkjazVzBfBgVNcUi7WSu5NMZeI2xWbebdgFrnTglqaMS3bH57U4imgQsBCqwUiPHjsFLsQROBctqbqJYjOkcT9lI0xAHTHlp8ZvMutDKxPIjqV8IVqH+nkhxoNQiILozP1Wtern4r0dIsLIa/Gsv5WGcAAvpcrOfCAsiK8/KmnDJKIiFJphKro+36AxLTEEnWtOpOKsZrJN+q+nYTeeuVW/flPlU0Rk6R5fIQVeojTqoi3qIokf0jF7Qq/FkvBnvxseytWKUM6foD4zPH85Hoyg=</latexit>



Experimental Setup

is piecewise-linear on    .

•Feedforward network;


•With a piecewise-linear activation    ;�

+
h

h(x) = Wk�(Wk�1�(· · ·W1x)

Rd

(e.g. ReLU, Hard-Tanh, Hard-Sigmoid, …)



Example of a Pw-linear Function

Rd

Rn

h

h1 h3h2 · · ·
· · ·

{hl} are linear.

(Wikipedia)

https://en.wikipedia.org/wiki/Piecewise_linear_function#/media/File:Piecewise_linear_function2D.svg


Input Domain: Interiors

h(x)� h(y) = h0(x)(x� y)

h0(x) = Wk�
0(· · · ) · · ·W2�

0(W1x)W1

A linear function, 


computable explicitly:

+
Local measure of sensitivity ⇠ kh0(x)k



Input Domain: Faces
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Global Measures of Sensitivity

• Interiors: 


•Faces:


•Correspond to first and second terms in Taylor expansion. 

Ex⇠PD kh0(x)k
(Jacobian norm at a data point)

(estimated via transitions along a trajectory of pixel translations of a data point)

Ex0⇠PD

I

x2{T tx0|t2[0;1]}
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@(dx)
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· · ·
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· · ·



(1) Sensitivity on/off Training Data Manifold

Trajectory Mean Jacobian norm Transition density
along... along...
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• Measure sensitivity along a 
circular trajectory through 
3 training points.


• Traversing such a 
trajectory corresponds to 
approaching and departing 
from the training data 
manifold.
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Sensitivity on/off Training Data Manifold
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dips dramatically 
around training 
data.


• Interpolating 
different digits 
results in higher 
norm.



Sensitivity on/off Training Data Manifold
Before training After training

(Linear region boundaries of the last (pre-logit) over a 2D slice in the input space through three training points)
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Sensitivity on/off Training Data Manifold
Trajectory Mean Jacobian norm Transition density
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dips around 
training data.


• Interpolating 
different digits 
results in higher 
number of 
transitions.



Sensitivity on/off Training Data Manifold
From Roman:


> Is the plot correct?


I believe the plot is correct, but admittedly 
the trend to have dips around points (see 
attached plot for zoomed-in version) is 
much noisier than with other metrics. 


> Or is this possibly related to the fact that 
over the entire circular trajectory through 
three points from the same class, network 
output never really changes?


I believe it is. I think it makes sense for the 
change to be small relative to that along the 
ellipse through three different points since 
same-class points might be closer + their 
interpolations might lie closer to the data 
manifold. 
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(2) Sensitivity and Generalization Factors
• Train (to 100% training 

accuracy) two neural 
networks sharing the same 
architecture and 
optimization procedure but 
differing in a single binary 
hyper-parameter.


• Compare the resulting test 
error and sensitivity 
metrics.
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Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.
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Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.
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Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.
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Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.
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Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.
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Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.
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Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.
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A.5.3 LINEAR REGION BOUNDARIES

Relevant figure 3.

A 15-layer ReLU6-network of width 300 was trained on MNIST for 218 steps using SGD with
momentum (Rumelhart et al., 1988); images were randomly translated with wrapping by up to 4
pixels in each direction, horizontally and vertically, as well as randomly flipped along each axis, and
randomly rotated by 90 degrees clockwise and counter-clockwise.

The sampling grid in input space was obtain by projecting three arbitrary input points into a plane
as described in §A.5.2 such that the resulting triangle was centered at 0 and it’s vertices were at a
distance 0.8 form the origin. Then, a sampling grid of points in the [�1; 1]⇥2 square was projected
back into the input space.

A.5.4 SMALL EXPERIMENT

Relevant figures: 4 (second row) and 5 (bottom).

All networks were trained for 218 steps of batch size of 256 using SGD with momentum. Learning
rate was set to 0.005 and momentum term coefficient to 0.9.

Data augmentation consisted of random translation of the input by up to 4 pixels in each direction
with wrapping, horizontally and vertically. The input was also flipped horizontally with probabil-
ity 0.5. When applying data augmentation (second row of Figure 4), the network is unlikely to
encounter the canonical training data, hence few configurations achieved 100% training accuracy.
However, we verified that all networks trained with data augmentation reached a higher test accu-
racy than their analogues without, ensuring that the generalization gap shrinks not simply because
of lower training accuracy.

For each dataset, networks of width {100, 200, 500, 1000, 2000, 3000}, depth {2, 3, 5, 10, 15, 20}
and activation function {ReLU, ReLU6, HardTanh, HardSigmoid} were evaluated on 8 random
seeds from 1 to 8.

A.5.5 LARGE EXPERIMENT

Relevant figures: 1, 4 (except for the second row), 5 (top), App.7.

335671 networks were trained for 219 steps with random hyper-parameters; if training did not com-
plete, a checkpoint at step 218 was used instead, if available. When using L-BFGS, the maximum
number of iterations was set to 2684. The space of available hyper-parameters included5:

1. CIFAR10 and CIFAR100 datasets cropped to a 24 ⇥ 24 center region;
2. all 5 non-linearities from §A.4;
3. SGD, Momentum, ADAM (Kingma & Ba, 2014), RMSProp (Hinton et al., 2012) and L-

BFGS optimizers;
4. learning rates from {0.01, 0.005, 0.0005}, when applicable. Secondary coefficients were

fixed at default values of Tensorflow implementations of respective optimizers;
5. batch sizes of {128, 512} (unless using L-BFGS with the full batch of 50000);
6. standard deviations of initial weights from {0.5, 1, 4, 8} multiplied by the default value

described in §A.5;
7. widths from

�
1, 2, 4, · · · , 216

 
;

8. depths from
�
2, 3, 5, · · · , 26 + 1

 
;

9. true and random training labels;
10. random seeds from 1 to 8.

5Due to time and compute limitations, this experiment was set up such that configurations of small size were
more likely to get evaluated (e.g. only a few networks of width 216 were trained, and all of them had depth
2). However, based on our experience with smaller experiments (where each configuration got evaluated), we
believe this did not bias the findings of this paper, while allowing them to be validated across a very wide range
of scenarios.
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4.2.1 HOW TO READ PLOTS

In Figure 4, for many possible hyper-parameter configurations, we train two models that share all
parameters and optimization procedure, but differ in a single binary setting (i.e. trained on true or
random labels; with or without data augmentation; etc). Out of all such network pairs, we select only
those where each network reached 100% training accuracy on the whole training set (apart from the
data augmentation study). The two generalization or sensitivity values are then used as the x and y
coordinates of a point corresponding to this pair of networks (with the plot axes labels denoting the
respective value of the binary parameter considered). The position of the point with respect to the
diagonal y = x visually demonstrates which configuration has smaller generalization gap / lower
sensitivity.

4.3 SENSITIVITY AND GENERALIZATION GAP

We now perform a large-scale experiment to establish direct relationships between sensitivity and
generalization in a realistic setting. In contrast to §4.1, where we selected locations in the input
space, and §4.2, where we varied a single binary parameter impacting generalization, we now sweep
simultaneously over many different architectural and optimization choices (§A.5.5).

Our main result is presented in Figure 5, indicating a strong relationship between the Jacobian norm
and generalization. In contrast, Figure App.8 demonstrates that the number of transitions is not
alone sufficient to compare networks of different sizes, as the number of neurons in the networks
has a strong influence on transition count.
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Figure 5: Jacobian norm correlates with generalization gap on all considered datasets. Each point
corresponds to a network trained to 100% training accuracy (or at least 99.9% in the case of CI-
FAR100). See §A.5.4 and §A.5.5 for experimental details of bottom and top plots respectively.
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Expectation Reality?

Figure App.10: Occam’s razor: simplified expectation vs hypothesized reality. All datasets D0 with
input and target dimensions matching those of a particular dataset D are sorted according to the
evidence P [D0|H] of a large model Hl from left to right along the horizontal axis. Left: a classic
simplified depiction of Bayesian Occam’s razor. Evidence P [D0|H] of a small model Hs with few
parameters has narrow support in the dataset space and is more peaked. If the model fits the dataset
D well, it falls close to the peak and outperforms a larger model Hl with more parameters, having
wider support. Right: suggested potential reality of neural networks. Evidence of the small model
Hs peaks higher, but the large model Hl might nonetheless concentrate the majority of probability
mass on simple functions and the evidence curves might intersect at a small angle. In this case,
while a dataset D lying close to the intersection can be fit by both models, the Bayesian evidence
ratio depends on its exact position with respect to the intersection.

nuanced as depicted in Figure App.10 (right), with the evidence ratio being highly dependent on the
particular dataset.

We interpret our work as defining hypothesis classes based on sensitivity of the hypothesis (which
yielded promising results in (Rasmussen & Ghahramani, 2000) on a toy task) and observing a
strongly non-uniform prior on these classes that enables model comparison. Indeed, at least in
the context of natural images classification, putting a prior on the number of parameters or Kol-
mogorov complexity of the hypothesis is extremely difficult. However, a statement that the true
classification function is robust to small perturbations in the input is much easier to justify. As such,
a prior P [H] in favor of robustness over sensitivity might fare better than a prior on specific network
hyper-parameters.

Above is one way to interpret the correlation between sensitivity and generalization that we observe
in this work. It does not explain why large networks tend to converge to less sensitive functions.
We conjecture large networks to have access to a larger space of robust solutions due to solving a
highly-underdetermined system when fitting a dataset, while small models converge to more extreme
weight values due to being overconstrained by the data. However, further investigation is needed to
confirm this hypothesis.

A.3 BOUNDING THE JACOBIAN NORM

Here we analyze the relationship between the Jacobian norm and the cross-entropy loss at individual
test points as studied in §4.4.

Target class Jacobian. We begin by relating the derivative of the target class probability Jy(x) to
per-point cross-entropy loss l(x) = � log [f�(x)]y(x) (where y(x) is the correct integer class).

We will denote f�(x) by � and drop the x argument to de-clutter notation (i.e. write f instead of
f(x)). Then the Jacobian can be expressed as

J =
h�
�1T

�
�
�
I � �1T

�T
i✓ @f

@xT

◆
,
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where � is the Hadamard element-wise product. Then indexing both sides of the equation at the
correct class y yields

Jy = �y

✓
(ey � �)T

✓
@f

@xT

◆◆
,

where ey is a vector of zeros everywhere except for ey = 1. Taking the norm of both sides results in

kJyk22 = �2
y

dX

k=1

2

4(1 � �y)2
✓
@fy

@xk

◆2

+
nX

j 6=y

✓
�j

@fj

@xk

◆2
3

5 (2)

= �2
y

2

4(1 � �y)2
dX

k=1

✓
@fy

@xk

◆2

+
nX

j 6=y

�2
j

dX

k=1

✓
@fj

@xk

◆2
3

5 (3)

= �2
y

2

4(1 � �y)2
����
@fy

@xT

����
2

2

+
nX

j 6=y

�2
j

����
@fj

@xT

����
2

2

3

5 (4)

We now assume that magnitudes of the individual logit derivatives vary little in between logits and
over the input space3: ����

@fi

@xT

����
2

2

⇡ 1

n
Extest

����
@f

@xT
test

����
2

F

,

which simplifies Equation 4 to

kJyk22 ⇡ M�2
y

2

4(1 � �y)2 +
nX

j 6=y

�2
j

3

5 ,

where M = Extest

��@f/@xT
test

��2
F
/n. Since � lies on the (n�1)-simplex �n�1, under these assump-

tions we can bound:
(1 � �y)2

n � 1
6

nX

j 6=y

�2
j 6 (1 � �y)2,

and finally
n

n � 1
M�2

y (1 � �y)2 / kJyk22 / 2M�2
y (1 � �y)2 ,

or, in terms of the cross-entropy loss l = � log �y:
r

nM

n � 1
�l

�
1 � �l

�
/ kJyk2 /

p
2M �l

�
1 � �l

�
. (5)

We validate these approximate bounds in Figure App.11 (top).

Full Jacobian. Equation 5 establishes a close relationship between Jy and loss l = � log �y , but of
course, at test time we do not know the target class y. This allows us to only bound the full Jacobian
norm from below: r

nM

n � 1
�l

�
1 � �l

�
/ kJyk2 6 kJkF . (6)

For the upper bound, we assume the maximum-entropy case of �y: �i ⇡ (1 � �y)/(n � 1), for
i 6= y. The Jacobian norm is

kJk2F =
nX

i=1

kJik22 = kJyk22 +
nX

i 6=y

kJik22 ,

3In the limit of infinite width, and fully Bayesian training, deep network logits are distributed exactly ac-
cording to a Gaussian process (Neal, 1994; Lee et al., 2018). Similarly, each entry in the logit Jacobian also
corresponds to an independent draw from a Gaussian process (Solak et al., 2003). It is therefore plausible that
the Jacobian norm, consisting of a sum over the square of independent Gaussian samples in the correct limits,
will tend towards a constant.
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where the first summand becomes:
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Adding n � 1 of such summands to kJyk22 results in
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compared against the lower bound (Equation 6) and experimental data in Figure App.11.
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Figure App.11: Top: Jacobian norm kJy (x)k2 =
���@f� (x)y /@x

T
���
2

of the true class y output
probability is tightly related to the cross-entropy loss. Each point corresponds to one of the 1000 test
inputs to a 100% trained network on CIFAR10, while lines depict analytic bounds from Equation 5.
Bottom: Same experiment plotting the full Jacobian norm kJkF against cross-entropy. Solid lines
correspond to the lower bound from Equation 6 and the norm approximation from Equation 7. See
§A.5.7 for experimental details and Figures 6 and App.8 for empirical evaluation of this relationship
on multiple datasets and models.
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Expectation Reality?

Figure App.10: Occam’s razor: simplified expectation vs hypothesized reality. All datasets D0 with
input and target dimensions matching those of a particular dataset D are sorted according to the
evidence P [D0|H] of a large model Hl from left to right along the horizontal axis. Left: a classic
simplified depiction of Bayesian Occam’s razor. Evidence P [D0|H] of a small model Hs with few
parameters has narrow support in the dataset space and is more peaked. If the model fits the dataset
D well, it falls close to the peak and outperforms a larger model Hl with more parameters, having
wider support. Right: suggested potential reality of neural networks. Evidence of the small model
Hs peaks higher, but the large model Hl might nonetheless concentrate the majority of probability
mass on simple functions and the evidence curves might intersect at a small angle. In this case,
while a dataset D lying close to the intersection can be fit by both models, the Bayesian evidence
ratio depends on its exact position with respect to the intersection.

nuanced as depicted in Figure App.10 (right), with the evidence ratio being highly dependent on the
particular dataset.

We interpret our work as defining hypothesis classes based on sensitivity of the hypothesis (which
yielded promising results in (Rasmussen & Ghahramani, 2000) on a toy task) and observing a
strongly non-uniform prior on these classes that enables model comparison. Indeed, at least in
the context of natural images classification, putting a prior on the number of parameters or Kol-
mogorov complexity of the hypothesis is extremely difficult. However, a statement that the true
classification function is robust to small perturbations in the input is much easier to justify. As such,
a prior P [H] in favor of robustness over sensitivity might fare better than a prior on specific network
hyper-parameters.

Above is one way to interpret the correlation between sensitivity and generalization that we observe
in this work. It does not explain why large networks tend to converge to less sensitive functions.
We conjecture large networks to have access to a larger space of robust solutions due to solving a
highly-underdetermined system when fitting a dataset, while small models converge to more extreme
weight values due to being overconstrained by the data. However, further investigation is needed to
confirm this hypothesis.

A.3 BOUNDING THE JACOBIAN NORM

Here we analyze the relationship between the Jacobian norm and the cross-entropy loss at individual
test points as studied in §4.4.

Target class Jacobian. We begin by relating the derivative of the target class probability Jy(x) to
per-point cross-entropy loss l(x) = � log [f�(x)]y(x) (where y(x) is the correct integer class).

We will denote f�(x) by � and drop the x argument to de-clutter notation (i.e. write f instead of
f(x)). Then the Jacobian can be expressed as

J =
h�
�1T

�
�
�
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◆
,
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where � is the Hadamard element-wise product. Then indexing both sides of the equation at the
correct class y yields
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We now assume that magnitudes of the individual logit derivatives vary little in between logits and
over the input space3: ����
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We validate these approximate bounds in Figure App.11 (top).

Full Jacobian. Equation 5 establishes a close relationship between Jy and loss l = � log �y , but of
course, at test time we do not know the target class y. This allows us to only bound the full Jacobian
norm from below: r

nM

n � 1
�l

�
1 � �l

�
/ kJyk2 6 kJkF . (6)

For the upper bound, we assume the maximum-entropy case of �y: �i ⇡ (1 � �y)/(n � 1), for
i 6= y. The Jacobian norm is

kJk2F =
nX

i=1

kJik22 = kJyk22 +
nX

i 6=y

kJik22 ,

3In the limit of infinite width, and fully Bayesian training, deep network logits are distributed exactly ac-
cording to a Gaussian process (Neal, 1994; Lee et al., 2018). Similarly, each entry in the logit Jacobian also
corresponds to an independent draw from a Gaussian process (Solak et al., 2003). It is therefore plausible that
the Jacobian norm, consisting of a sum over the square of independent Gaussian samples in the correct limits,
will tend towards a constant.
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where the first summand becomes:

kJyk22 ⇡ M�2
y

"
(1 � �y)2 + (n � 1)

✓
1 � �y

n � 1

◆2
#

=
Mn

n � 1
�2

y (1 � �y)2 ,

and each of the others

kJik22 ⇡ M

✓
1 � �y

n � 1

◆2
"✓

1 � 1 � �y

n � 1

◆2

+

 
�2

y + (n � 2)

✓
1 � �y

n � 1

◆2
!#

=
M

(n � 1)3
(1 � �y)2

�
n�2

y + n � 2
�2

.

Adding n � 1 of such summands to kJyk22 results in

kJkF ⇡
p
M

(n � 1)
(1 � �y)

q
n2�2

y + n � 2 =

p
M

(n � 1)

�
1 � �l

�p
n2 �2l + n � 2, (7)

compared against the lower bound (Equation 6) and experimental data in Figure App.11.
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Figure App.11: Top: Jacobian norm kJy (x)k2 =
���@f� (x)y /@x

T
���
2

of the true class y output
probability is tightly related to the cross-entropy loss. Each point corresponds to one of the 1000 test
inputs to a 100% trained network on CIFAR10, while lines depict analytic bounds from Equation 5.
Bottom: Same experiment plotting the full Jacobian norm kJkF against cross-entropy. Solid lines
correspond to the lower bound from Equation 6 and the norm approximation from Equation 7. See
§A.5.7 for experimental details and Figures 6 and App.8 for empirical evaluation of this relationship
on multiple datasets and models.
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Figure App.10: Occam’s razor: simplified expectation vs hypothesized reality. All datasets D0 with
input and target dimensions matching those of a particular dataset D are sorted according to the
evidence P [D0|H] of a large model Hl from left to right along the horizontal axis. Left: a classic
simplified depiction of Bayesian Occam’s razor. Evidence P [D0|H] of a small model Hs with few
parameters has narrow support in the dataset space and is more peaked. If the model fits the dataset
D well, it falls close to the peak and outperforms a larger model Hl with more parameters, having
wider support. Right: suggested potential reality of neural networks. Evidence of the small model
Hs peaks higher, but the large model Hl might nonetheless concentrate the majority of probability
mass on simple functions and the evidence curves might intersect at a small angle. In this case,
while a dataset D lying close to the intersection can be fit by both models, the Bayesian evidence
ratio depends on its exact position with respect to the intersection.

nuanced as depicted in Figure App.10 (right), with the evidence ratio being highly dependent on the
particular dataset.

We interpret our work as defining hypothesis classes based on sensitivity of the hypothesis (which
yielded promising results in (Rasmussen & Ghahramani, 2000) on a toy task) and observing a
strongly non-uniform prior on these classes that enables model comparison. Indeed, at least in
the context of natural images classification, putting a prior on the number of parameters or Kol-
mogorov complexity of the hypothesis is extremely difficult. However, a statement that the true
classification function is robust to small perturbations in the input is much easier to justify. As such,
a prior P [H] in favor of robustness over sensitivity might fare better than a prior on specific network
hyper-parameters.

Above is one way to interpret the correlation between sensitivity and generalization that we observe
in this work. It does not explain why large networks tend to converge to less sensitive functions.
We conjecture large networks to have access to a larger space of robust solutions due to solving a
highly-underdetermined system when fitting a dataset, while small models converge to more extreme
weight values due to being overconstrained by the data. However, further investigation is needed to
confirm this hypothesis.
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Here we analyze the relationship between the Jacobian norm and the cross-entropy loss at individual
test points as studied in §4.4.

Target class Jacobian. We begin by relating the derivative of the target class probability Jy(x) to
per-point cross-entropy loss l(x) = � log [f�(x)]y(x) (where y(x) is the correct integer class).

We will denote f�(x) by � and drop the x argument to de-clutter notation (i.e. write f instead of
f(x)). Then the Jacobian can be expressed as
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cording to a Gaussian process (Neal, 1994; Lee et al., 2018). Similarly, each entry in the logit Jacobian also
corresponds to an independent draw from a Gaussian process (Solak et al., 2003). It is therefore plausible that
the Jacobian norm, consisting of a sum over the square of independent Gaussian samples in the correct limits,
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Figure App.11: Top: Jacobian norm kJy (x)k2 =
���@f� (x)y /@x

T
���
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of the true class y output
probability is tightly related to the cross-entropy loss. Each point corresponds to one of the 1000 test
inputs to a 100% trained network on CIFAR10, while lines depict analytic bounds from Equation 5.
Bottom: Same experiment plotting the full Jacobian norm kJkF against cross-entropy. Solid lines
correspond to the lower bound from Equation 6 and the norm approximation from Equation 7. See
§A.5.7 for experimental details and Figures 6 and App.8 for empirical evaluation of this relationship
on multiple datasets and models.
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Conclusion

• Trained NNs implement functions that are 
significantly more stable around the training 
data manifold than away from it.


• Jacobian norm of a trained NN evaluated at 
test points is predictive of test error.



Ideas for future work?

• ?


