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• Naturally learns well in redundant action spaces


• Transfers across permuted action spaces 


• Enables learning from observations obtained from 
completely random policies 
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Tabular experiments

• Q(s,s’) stored in table


• Given N(s) and I(s,s’)


• 11x11 gridworld


• 4 actions 
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Tabular experiments

Example of equivalence of QSA and QSS
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Tabular experiments

• 4 actions with 
probability of slipping


• Given N(s) and I(s,s’)

G
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Tabular experiments

Example of QSS with stochastic actions
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Tabular experiments

Example of QSS with stochastic actions
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Tabular experiments

50% slippage along edge

Example of QSS with stochastic actions
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Tabular experiments

G

• 4 base actions with 
redundancy


• Learn I(s,s’)
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Tabular experiments

QSS with redundant actions



21

Tabular experiments

• 11x11 gridworld


• 4 actions 0, 1, 2, 3


• Given N(s)


• Learn I(s,s’)

G G

• 11x11 gridworld


• 4 actions 3, 2, 1, 0


• Given N(s)


• Learn I(s,s’)
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Tabular experiments

QSS with permuted actions
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Tabular experiments

• Experiments demonstrated properties of QSS


• Most problems cannot be solved in tabular setting


• How to learn in settings with large/continuous state spaces?
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D3G Control Experiments

• 11x11 gridworld


• Mujoco tasks


• I(s,s’) learned
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• Given demonstration data 


• Train                 and


Learning from Observation



s′ τ

s

s′ f

a

τψ

Iω

fϕ

τψ(s) = s′ τModel

Inverse dynamics Iω(s, s′ τ) = a

Forward dynamics fϕ(s, a) = s′ f
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Learning from Observation
Cycle Loss



s′ τ

s

s′ f

q

τψ

Iω

fϕ

τψ(s) = s′ τModel

QSS Q(s, s′ τ) = q

Forward dynamics fϕ(s, q) = s′ f
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Learning from Observation
Cycle Loss

56
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Learning from Observation

Table: Learning from observation with noise injected into policies



Conclusion

• Introduced new value function, Q(s,s’)


• Described predictive model for maximizing these values


• Showed benefits in redundant action spaces, transfer across 
permuted actions, and learning from observation


• Code: https://github.com/uber-research/D3G
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https://github.com/uber-research/D3G

