SlowNo

Improving Communication-Efficient

Distributed SGD with **Slow Momentum**

<u>Jianyu Wang</u>¹, Vinayak Tantia², Nicolas Ballas², Michael Rabbat²

FACEBOOK

¹Carnegie Mellon University ²Facebook AI Research

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is the

backbone of ML, especially deep learning

Initial point

Empirical Risk

$$F(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x})$$

Mini-batch SGD
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \cdot \frac{1}{|\xi_k|} \sum_{j \in \xi_k} \nabla f_j(\mathbf{x}_k)$$
 Stochastic gradient

Loss incurred by the *i*-th sample

Big Model, Big Data

Training on a single machine can takes several days or even weeks.

It is imperative to distribute SGD across multiple machines!

Extremely large training datasets

Classic Method: Fully Synchronous SGD

Execution pipeline:

1. Local stochastic gradients computation

Gradient at k-th iteration and i-th worker:

$$g(\mathbf{x}_k; \xi_k^{(i)}) = \frac{1}{|\xi_k^{(i)}|} \sum_{j \in \xi_k^{(i)}} \nabla f_j(\mathbf{x}_k)$$

Blue arrows: gradient computation time

Classic Method: Fully Synchronous SGD

Execution pipeline:

- 1. Local stochastic gradients computation
- 2. Average local models across all nodes

Communication can be implemented via:

Li et al. Scaling Distributed Machine Learning with the Parameter Server, In OSDI 2014

Goyal et al. **Accurate, Large Mini-Batch SGD: Training ImageNet in 1 Hour**, *ArXiv preprint 2017*

Classic Method: Fully Synchronous SGD

Execution pipeline:

- 1. Local stochastic gradients computation
- 2. Average local models across all nodes
- 3. Repeat the above steps until convergence

Communication is the Bottleneck in DNN Training

In deep neural nets training, the communication time can be even larger

than computation time. [Harlap et al. ArXiv preprint 2018; Wang and Joshi, SysML 2019]

Communication is the Bottleneck in DNN Training

It is critical to develop communication-efficient distributed SGD

Background: Communication-Efficient Training Motivation

Update rule of fully synchronous SGD (i.e., AllReduce SGD/AR-SGD)

$$m{X}_{k+1} = [m{X}_k - \eta m{G}_k] m{J} \quad \text{Local model at one node}$$
 where $m{X}_k = [m{x}_k^{(1)}, m{x}_k^{(2)}, \dots, m{x}_k^{(m)}] \in \mathbb{R}^{d \times m}$
$$m{G}_k = [g(m{x}_k^{(1)}; \xi_k^{(1)}), g(m{x}_k^{(2)}; \xi_k^{(2)}), \dots, g(m{x}_k^{(m)}; \xi_k^{(m)})] \in \mathbb{R}^{d \times m}$$
 $m{J} = m{1}m{1}^{\top}/m$ Fully synchronization (AllReduce) matrix

After preform AllReduce operation (J), all local models (columns in X) are the same

Is it necessary? Can we replace J by other matrices?

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangle Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

- Local SGD: "temporal" sparse synchronization
 - reduce the communication frequency

$$x^{(k)}$$
 $x^{(k+\tau)}$

$$\boldsymbol{X}_{k+1} = [\boldsymbol{X}_k - \eta \boldsymbol{G}_k] \boldsymbol{S}_k$$

$$m{S}_k = egin{cases} m{J} & k mod au = 0 \ m{I} & m{ ext{otherwise}} \end{cases}$$

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangle Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

- Stochastic Gradient Push: "spatial" sparse synchronization
 - Only synchronize with one neighbor instead of all

- Elements on each row sum to 1
- Each row has only two non-zero elements

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangledown Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

Stochastic Gradient Push: "spatial" sparse synchronization

$$oldsymbol{X}_{k+1} = [oldsymbol{X}_k - \eta oldsymbol{G}_k] oldsymbol{S}_k$$

- Elements on each row sum to 1
- Each row has only two non-zero elements

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangle Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

Stochastic Gradient Push: "spatial" sparse synchronization

$$oldsymbol{X}_{k+1} = [oldsymbol{X}_k - \eta oldsymbol{G}_k] oldsymbol{S}_k$$

- Elements on each row sum to 1
- Each row has only two non-zero elements

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangle Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

Stochastic Gradient Push: "spatial" sparse synchronization

$$oldsymbol{X}_{k+1} = [oldsymbol{X}_k - \eta oldsymbol{G}_k] oldsymbol{S}_k$$

- Elements on each row sum to 1
- Each row has only two non-zero elements

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangle Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

Stochastic Gradient Push: "spatial" sparse synchronization

- Elements on each row sum to 1
- Each row has only two non-zero elements

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangle Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

Stochastic Gradient Push: "spatial" sparse synchronization

$$oldsymbol{X}_{k+1} = [oldsymbol{X}_k - \eta oldsymbol{G}_k] oldsymbol{S}_k$$

- Elements on each row sum to 1
- Each row has only two non-zero elements

Key Ideas:

- Reduce communication by allowing inconsistent local models
- lacktriangle Let synchronization matrix $oldsymbol{J}$ to be sparse: $oldsymbol{J} o oldsymbol{S}_k$

Example Algorithms

- Stochastic Gradient Push: "spatial" sparse synchronization
 - Only synchronize with one neighbor instead of all

Algorithm	# handshakes	Transferred data size
AR-SGD	O(m) or O(log m)	O(1)
SGP	O(1)	O(1)

$$oldsymbol{X}_{k+1} = [oldsymbol{X}_k - \eta oldsymbol{G}_k]oldsymbol{S}_k$$

- Elements on each row sum to 1
- Each row has only two non-zero elements

Distributed Momentum Scheme

The momentum scheme for communication-efficient training methods have not been formally studied

- Local momentum Scheme:
 - By default, SGP and Local SGD let workers maintain unsynchronized local momentum buffers
- Double-Averaging Scheme: [Yu et al. ICML 2019]
 - Average momentum buffers as well as model parameters
 - Doubled/tripled communication cost

Algorithm	Time/iteration	Best Validation Acc.
AR-SGD	420 ms	76.00%
SGP	304 ms	75.15%
SGP-double-avg	402 ms	75.54%
Local SGD	294 ms	69.94%

Reset50, ImageNet Training

- 8k mini-batch size
- 10Gbps Ethernet

We propose Slow Momentum (SlowMo):

A Novel Distributed Momentum Scheme

- Improve performance of communication-efficient distributed SGD
- Negligible additional overhead
- Convergence guarantee for non-convex loss functions

A General Framework

 Can be applied on top of various distributed optimizers, such as SGP, Overlap-SGP, Local SGD, D-PSGD, etc.

Our Solution: Slow Momentum (SlowMo)

Step 1

starting from $\mathbf{x}_{t,0}$, perform multiple steps of base optimizer

- Base optimizer can have local momentum --> two-layer momentum
- Base optimizer can be SGP, Local SGD, D-PSGD, etc.

Step 2

Average all local models and obtain $\mathbf{x}_{t, au}$

Treat
$$\frac{1}{\gamma_t}(\mathbf{x}_{t,0}-\mathbf{x}_{t, au})$$
 as a pseudo-gradient for $\mathbf{x}_{t,0}$

Step 3

Update slow momentum buffer $\mathbf{u}_{t+1} = \beta \mathbf{u}_t + \frac{1}{\gamma_t} (\mathbf{x}_{t,0} - \mathbf{x}_{t,\tau})$

Update initial point $\mathbf{x}_{t+1,0} = \mathbf{x}_{t,0} - \alpha \gamma_t \mathbf{u}_{t+1}$

• "Slow" because updated after every au steps

Our Solution: Slow Momentum (SlowMo)

Step 1

starting from $\mathbf{x}_{t,0}$, perform multiple steps of base optimizer

- Base optimizer can have local momentum --> two-layer momentum
- Base optimizer can be SGP, Local SGD, D-PSGD, etc.

Step 2

Average all local models and obtain $\mathbf{x}_{t, au}$

Treat
$$\frac{1}{\gamma_t}(\mathbf{x}_{t,0}-\mathbf{x}_{t, au})$$
 as a pseudo-gradient for $\mathbf{x}_{t,0}$

Step 3

Update slow momentum buffer $\mathbf{u}_{t+1} = \beta \mathbf{u}_t + \frac{1}{\gamma_t} (\mathbf{x}_{t,0} - \mathbf{x}_{t,\tau})$ Update initial point $\mathbf{x}_{t+1,0} = \mathbf{x}_{t,0} - \alpha \gamma_t \mathbf{u}_{t+1}$

• "Slow" because updated after every τ steps

- α Global learning rate
- β Slow momentum factor
- au Sync. Period

$$\mathcal{A}(\alpha, \beta, \tau, \text{optimizer})$$

Design Choice: Buffer Strategies in SlowMo

When the base optimizer has momentum or other buffers

- For example, use Adam as base optimizer
- It has 1st-order and 2nd-order momen, buffers

After each global step, one can choose to

- 1. Reinitialize local buffers Works best for Image Classification
- 2. Maintain local buffers
- Works best for Language Modeling
- 3. Synchronize local buffers (additional comm. cost)

Convergence Analysis: Assumptions

(A1) Lipschitz smooth:
$$\|\nabla F_i(\mathbf{x}) - \nabla F_i(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|$$

(A2) Unbiased gradient estimation:
$$\mathbb{E}_{\xi^{(i)}|\mathbf{x}}[g(\mathbf{x};\xi^{(i)})] = \nabla F_i(\mathbf{x})$$

(A3) Bounded variance:
$$\mathbb{E}_{\xi^{(i)}|\mathbf{x}}\left[\left\|g(\mathbf{x};\xi^{(i)}) - \nabla F_i(\mathbf{x})\right\|^2\right] \leq \sigma^2$$

Convergence Analysis of SlowMo

$$\mathcal{A}(\alpha, \beta, \tau, \text{optimizer})$$

The proposed algorithm can converge to a stationary point

$$\frac{1}{K} \sum_{t=0}^{T-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla F(\mathbf{x}_{t,k})\|^{2} \leq \mathcal{O}(\frac{1}{\sqrt{mK}}) + \mathcal{O}(\frac{1}{K}) + \underbrace{\frac{1}{K} \sum_{t=0}^{T-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla F(\mathbf{x}_{t,k}) - \mathbb{E}_{t,k}[\mathbf{d}_{t,k}]\|^{2}}_{}$$

Noise from inner optimizer

where

- K: total iterations
- m: number of worker nodes
- F: objective function

Has already been shown in previous works

$$\mathcal{O}(\frac{m}{K})$$

If base optimizer converges, then SlowMo converges in the same rate

Convergence Analysis of SlowMo

$$\mathcal{A}(\alpha, \beta, \tau, \text{optimizer})$$

The proposed algorithm can converge to a stationary point

$$\frac{1}{K} \sum_{t=0}^{T-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla F(\mathbf{x}_{t,k})\|^{2} \leq \mathcal{O}(\frac{1}{\sqrt{mK}}) + \mathcal{O}(\frac{1}{K}) + \underbrace{\frac{1}{K} \sum_{t=0}^{T-1} \sum_{k=0}^{\tau-1} \mathbb{E} \|\nabla F(\mathbf{x}_{t,k}) - \mathbb{E}_{t,k}[\mathbf{d}_{t,k}]\|^{2}}_{}$$

Noise from inner optimizer

where

- K: total iterations
- m: number of worker nodes
- F: objective function

- 1. When total iterations is sufficiently large, the convergence rate will be dominated by $1/\sqrt{mK}$
 - Same rate as AR-SGD
- 2. Linear Speedup: more workers, less iterations
- 3. Changing hyper-parameters can improve constants but the rate remains the same

Subsume Previous Algorithms as Special Cases

forward, 1 step back"

$$\mathcal{A}(\alpha, \beta, \tau, \text{Local-SGD})$$

Blockwise Model Update Filtering

Chen & Huo., ICASSP 2016, "Scalable training of deep learning machines by incremental block training with intrablock parallel optimization and blockwise model-update filtering"

We provide the **first convergence guarantee** for these two algorithms under non-convex setting!

Empirical Results: Training Curves

Faster Convergence, Better Validation Accuracy

CIFAR-10

- ResNet-18
- 32 NVIDIA V100 GPUs
- Mini-batch size: 4k

$$\alpha = 1, \beta = 0.7, \tau = 12$$

ImageNet

- ResNet-50
- 32 NVIDIA DGX-1 servers
- Mini-batch size: 8k

$$\alpha = 1, \beta = 0.7, \tau = 48$$

WMT'16

- Transformer
- 8 NVIDIA DGX-1 servers
- Mini-batch size: 200k

$$\alpha = 1, \beta = 0.7, \tau = 48$$

Empirical Results: Validation Accuracy

Faster Convergence, Better Validation Accuracy

CIFAR-10

Base Optimizer	Original	w/ SlowMo	
Local SGD	91.73	93.20	+1.5%
OSGP	93.17	93.74	+0.6%
SGP	93.90	94.32	+0.4%
ARSGD	92.66	-	

ImageNet

Base Optimizer	Original	w/ SlowMo	
Local SGD	69.94	73.24	+3.3%
OSGP	74.96	75.54	+0.6%
SGP	75.15	75.73	+0.6%
ARSGD	76.00	-	

Empirical Results: Time / Iteration

Negligible Additional Communication Cost

ImageNet

Base Optimizer	Original	w/ SlowMo
Local SGD	294 ms	282 ms
OSGP	271 ms	271 ms
SGP	304 ms	302 ms
ARSGD	402 ms	-

WMT'16 En-De

Base Optimizer	Original	w/ SlowMo
Local Adam	503 ms	505 ms
SGP	1225 ms	1279 ms
ARSGD	1648 ms	-

Effect of au

How to set Hyper-parameters α , β ?

Parameter sweep on CIFAR-10 dataset:

- Larger global LR is better lpha=1
- There is a best value of slow momentum $\beta \in [0.4, 0.8]$

Comparison with Double-Averaging Momentum

[Yu et al. ICML 2019] proposes to average momentum buffers as well as model parameters

Doubled/tripled communication costs

SlowMo achieves higher accuracy using less time

Algorithm	Time/iteration	Best Validation Acc.
AR-SGD	420 ms	76.00%
SGP	304 ms	75.15%
SGP-double-avg	402 ms	75.54%
SGP-SlowMO	302 ms	75-73%

Thanks for attention!

SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum <u>arXiv: 1910.00643</u>

Code will be available soon. More questions: jianyuw1@andrew.cmu.edu,