SlowMo

Improving Communication-Efficient

Xt,T _/nyut
T steps of

Distributed SGD with Slow Momentum e optmizer

—m— - -

Jianyu Wang!, Vinayak Tantia?, Nicolas Ballas?, Michael Rabbat?

Carnegie ICarnegie Mellon University
Mellon FACEBOOK

Univel'sity 2Facebook Al Research

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is the

backbone of ML, especially deep learning
Loss incurred by the i-th sample

Initial point ‘

(\> Empirical Risk F(x) = %Zfz(x)
%

1
Mini-batchSGD Xk+1 = Xk — 7~ |§—k‘ Z Vfj(xk)
JEEkK

|

Stochastic gradient

2

Big Model, Big Data

)

Extremely high-dimensional parameters

oD
w0

g g
§
& g w 3
o H i
1 H = - A’
1 H

Y

U0 YKea
v0oyKea

o)

(S)IT+1xT (S)T+sxs (S)T+ExE (S)IT+1XT
A A Al I
(S+1xt M (S)T+sxs M (S)T+exe M (S)T+IXT

(S)T+ExE (S)T+1xT (S)T+1xT
A Al

(S)it+exe W (S)T+IXT [(S)T+IXT
A Al

1004XEW

100dXEW

(S)T+EXE (SIT+IxT (S)iT+1x1
|00dxe [AUO;

(S)T+1XT
)
o [l Grsxs m
2 A
yeuoydeq
(NE+SXS
|oogabesany
Y

oD

100X

(SIT+EXE
AU

(S)Z+exe

100dXe

©)t+ixt [l (s)t+sxs [l (s)t+exe [l (S)T+HIXT
10; Aug
(S)T+1xt (S)T+5x5 (S)T+exe S+t
AO;

(S)T+EXE (S)T+1IXT (S)IT+IxT
AUO;

(S)T+EXE (S)T+1xT (S)IT+1x1
AO;

1®u0dyq
+ex +1x
I

(SIT+EXE
joodxen

(SiIT+oex (S)T+Sxs (S)T+exe (SiT+1xT
AUO; A A

(s)+exe [l (SIT+xT [l (S)T+IXT
A

[00dxen

(S)T+exE (SI+opa S)T+1xT
A

(NE+SXS
joogebesony
A}
L
oxewos

IMAGENET

Training on a single machine
can takes several days or even weeks.

It is imperative to distribute SGD _ =i e Tl
across multiple machines! Extremely large training datasets

worker 1

worker 2

worker m

Classic Method: Fully Synchronous SGD

Execution pipeline:

1. Local stochastic gradients computation

Wall-clock time
C

X1

RdiEd|

r

Gradient at k-th iteration and i-th worker:

(Xk g(”&) —

J€€

\

Blue arrows: gradient computation time

Classic Method: Fully Synchronous SGD

Execution pipeline:

2. Average local models across all nodes

Wall-clock time

C >
X1 X2
worker 1 ‘
| c
(@)
worker 2 - = 1
: I 2 - E :x("’)
=
| € M=
) S
(@)
| (&)
worker m »

= Blue arrows: gradient computation time

Communication can be implemented via:
All-Reduce

2

Goyal et al. Accurate, Large Mini-Batch
SGD: Training ImageNet in 12 Hour,
ArXiv preprint 2017

Parameter Server

78S

Li et al. Scaling Distributed Machine

Learning with the Parameter Server,
In OSDI 2014

Red blocks: communication time

Classic Method: Fully Synchronous SGD

Execution pipeline:

3. Repeat the above steps until convergence

Wall-clock time

L

M Aod

S
\]

worker 1

worker 2

Communication

lluf

Communication
Communication

' ' ' o

1 t
Communication

l l |

'Cﬂ

e

Communication

(TS

worker m

= Blue arrows: gradient computationtime = Red blocks: communication time

worker 1

worker 2

Ideal:
11 iterations

worker m

worker m

1 X7
worker 1 ‘

| c = c c c c

S S S S S S .

worker 2 - E *g 5 *g ‘g ‘g Practice:

‘ = 2 E = S S 7 iterations

! S € £ S S €

g s E E E s
, O O S S S O

= Blue arrows: gradient computationtime = Red blocks: communication time

Communication is the Bottleneck in DNN Training

In deep neural nets training, the communication time can be even larger

than com putation time. [Harlap et al. ArXiv preprint 2018; Wang and Joshi, SysML 2019]

Wall-clock time

X1 X3 X4
worker 1 ‘ ‘ -

i c c c
worker 2 ‘ = o » S ‘

| S S S

c c c

: £ € £

) : t =) .
worker m)) >

I 8

Communication is the Bottleneck in DNN Training

It is critical to develop[communication-efficient distributed SGD]

Wall-clock time
[4

X3

worker 1 |

worker 2 |

Communication

1y
e

worker m

Background: Communication-Efficient Training
Motivation

Update rule of fully synchronous SGD (i.e., AllReduce SGD/AR-SGD)
Xk_|_1 = [Xk; - nGk]J

Local model at one node
where X, = [ac,gl),wgf), . ,m,gm | € RIxm

1 1 2 2 m m m
Gi = [g(xt”;), 9P e, g™ ™)) e R

J = llT/m Fully synchronization (AllReduce) matrix

After preform AllReduce operation (.J), all local models (columns in X) are the same

Is it necessary? Can we replace J by other matrices?

Background: Communication-Efficient Training

Key Ideas:

= Reduce communication by allowing inconsistent local models

= Letsynchronization matrix .J to be sparse: J — S

\- J

Example Algorithms
. Xit+1 = [Xk — NG| Sk
= Local SGD: "temporal” sparse synchronization

o reduce the communication frequency S, = J kmodr=0
I otherwise

+®

Background: Communication-Efficient Training

Key Ideas:

= Reduce communication by allowing inconsistent local models

= Letsynchronization matrix .J to be sparse: J — S

\- J
Example Algorithms
= Stochastic Gradient Push: "spatial” sparse synchronization Xpi1 = [Xi — 1G] Sk
o Only synchronize with one neighbor instead of all l
Row-stochastic matrix

" Elements on each row sumto 1

= Eachrow has only two non-zero elements

lteration 1 lteration 2 Iteration 3

KB = 5@+ x0) k), = 24 x D) xfh, = S 4 x)

new

Background: Communication-Efficient Training

Key Ideas:

= Reduce communication by allowing inconsistent local models

= Letsynchronization matrix .J to be sparse: J — S

\- _/
Example Algorithms
= Stochastic Gradient Push: "spatial” sparse synchronization Xpi1 = [Xy — nG4] Sk
Row-stochastic matrix l

" Elements on each row sumto 1

@

= Eachrow has only two non-zero elements

Background: Communication-Efficient Training

Key Ideas:

= Reduce communication by allowing inconsistent local models

= Letsynchronization matrix .J to be sparse: J — S

\- _/
Example Algorithms
= Stochastic Gradient Push: "spatial” sparse synchronization Xpi1 = [Xy — nG4] Sk
Local gradient step ® Row-stochastic matrix ‘l'
x(k) = Elements on each row sumto1

= Eachrow has only two non-zero elements

Background: Communication-Efficient Training

Key Ideas:

= Reduce communication by allowing inconsistent local models

= Letsynchronization matrix .J to be sparse: J — S

\- _/
Example Algorithms
= Stochastic Gradient Push: "spatial” sparse synchronization Xpi1 = [Xy — nG4] Sk
Row-stochastic matrix l

" Elements on each row sumto 1

Approximate distributed averaging = Eachrow has only two non-zero elements

Background: Communication-Efficient Training

Key Ideas:

= Reduce communication by allowing inconsistent local models

= Letsynchronization matrix .J to be sparse: J — S

g J
Example Algorithms
= Stochastic Gradient Push: "spatial” sparse synchronization Xpi1 = [Xy — nG4] Sk
Row-stochastic matrix l

" Elements on each row sumto 1

<.
£®

Approximate distributed averaging = Eachrow has only two non-zero elements

Bounded disagreement

Background: Communication-Efficient Training

Key Ideas:

= Reduce communication by allowing inconsistent local models

= Letsynchronization matrix .J to be sparse: J — S

N\)

Example Algorithms

= Stochastic Gradient Push: "spatial” sparse synchronization X1 = [X — nGSk

. Row-stochastic matrix ‘l’
Disagreement provably

= Elements oneachrowsumto1
converges to o
= Eachrow has only two non-zero elements

Background: Communication-Efficient Training

Key Ideas:

g

Reduce communication by allowing inconsistent local models

Let synchronization matrix .J to be sparse: J — S},

J

Example Algorithms

= Stochastic Gradient Push: "spatial” sparse synchronization

o Only synchronize with one neighbor instead of all

Algorithm # handshakes Transferred data size
AR-SGD O(m) or O(log m) O(a)
SGP O(2) O(2)

Xi+1 = [X — nGx|Sk

Row-stochastic matrix ‘l’
= Elements on eachrowsumto1

= Eachrow has only two non-zero elements

Distributed Momentum Scheme

The momentum scheme for communication-efficient training
methods have not been formally studied

* Local momentum Scheme:
o By default, SGP and Local SGD let workers maintain unsynchronized local
momentum buffers
= Double-Averaging Scheme: [Yu et al. ICML 2019]

o Average momentum buffers as well as model parameters

o Doubled/tripled communication cost

Algorithm Time/iteration Best Validation Acc.
AR-SGD 420 Ms 76.00% Resetso, ImageNet Training
SGP 304 Ms 75.15% = 8k mini-batch size
SGP-double-avg 402 MS 75.54% * 10Gbps Ethernet
Local SGD 294 MS 69.94%

We propose Slow Momentum (SlowMo):

ﬁ A Novel Distributed Momentum Scheme

= |Improve performance of communication-efficient distributed SGD
= Negligible additional overhead

= Convergence guarantee for non-convex loss functions

b A General Framework

= Can be applied on top of various distributed optimizers, such as

SGP, Overlap-SGP, Local SGD, D-PSGD, etc.

Our Solution: Slow Momentum (SlowMo)

Step1

starting from X o, perform multiple steps of base optimizer

= Base optimizer can have local momentum --> two-layer momentum

= Base optimizer can be SGP, Local SGD, D-PSGD, etc.

Step 2

Average all local models and obtainx: -

Treat —(X¢,0 — X¢,7) as a pseudo-gradient for Xt T steps of base e
Tt optimizer

Step 3

Update slow momentum buffer u:y1 = Suy + %(Xt,o — X¢,r)

Update initial point X;11,0 = X¢0 — @y Uit

= “Slow” because updated after every t steps

Our Solution: Slow Momentum (SlowMo)

Step1

starting from X o, perform multiple steps of base optimizer

= Base optimizer can have local momentum --> two-layer momentum

= Base optimizer can be SGP, Local SGD, D-PSGD, etc.

Step 2

Average all local models and obtainx: -

Treat —(X¢,0 — X¢,7) as a pseudo-gradient for Xt T steps of base e
Mt optimizer

Step 3 « Global learning rate

Update slow momentum buffer us41 = fug + %(Xt,o — X¢,r) B Slow momentum factor

. . 7 Sync. Period
Update initial point X¢11,0 = X¢0 — QYU Y

= "Slow” because updated after every t steps [.A(Oé 8,7 optimizer)]
J Y ?

Design Choice: Buffer Strategies in SlowMo

When the base optimizer has momentum or other buffers
= For example, use Adam as base optimizer

= |t has 15t-order and 2"4-order momen. buffers

After each global step, one can choose to

o T steps of base
1. Reinitialize local buffers BT LENR O RINEICRO EL il 1 P .
optimizer
2. Maintain local buffers Works best for Language Modeling

3. Synchronize local buffers (additional comm. cost)

Convergence Analysis: Assumptions

(A1) Lipschitz smooth: ||VF;(x) — VF;(y)|| < L|x—y|
(A2) Unbiased gradient estimation: E.), [g(x; ¢ = VEF(x)

(A3) Bounded variance: [E.q D |x [

9069 - V|| <

24

Convergence Analysis of SlowMo
A(a, 8, T, optimizer)
The proposed algorithm can converge to a stationary point
T—17-1 T—17-1

=SS EIVE G I <O(——) + O(%) + Z > EIVE(xis) = Eoldilll

tOkO tOkO

i\H
>

7

TV
Noise from inner optimizer

where l

= K:total iterations : :
Has already been shown in previous works

= m: number of worker nodes m

= F:objective function K

If base optimizer converges, then SlowMo converges in the same rate

25

Convergence Analysis of SlowMo

A(a, 8, T, optimizer)

The proposed algorithm can converge to a stationary point

r—17—-1 T—171—1

1
— E||VF (x| <O(——) + +— E|VF (x4 %) — Ey i [de k]2
;l;) [VE x| <O(Z==) +0 ;;;3 IVE (xex) = Evelden]]

7

TV
Noise from inner optimizer

where 1. When total iterations is sufficiently large, the
= K:total iterations convergence rate will be dominated b
9 y1/\/ mK
= m: number of worker nodes o Same rate as AR-SGD
= F: objective function 2. Linear Speedup: more workers, less iterations

3. Changing hyper-parameters can improve constants

but the rate remains the same 26

Subsume Previous Algorithms as Special Cases

A(0.5,0, 7, AR-SGD) = Lookahead

Zhang et al., NeurlPS 2019, "Lookahead Optimizer: k steps
Global LR Sync. Period

forward, 1 step back”
Slow Momen.

A(Ot, B, T, LOC&]—SGD) = Blockwise Model Update Filtering
Chen & Huo., ICASSP 2016, “Scalable training of deep

learning machines by incremental block training with intra-

block parallel optimization and blockwise model-update

filtering”

We provide the first convergence guarantee for these two

algorithms under non-convex setting!

27

Empirical Results: Training Curves

Faster Convergence, Better Validation Accuracy

—-- AR-SGD
~—- SGP
—— SGP-SLOMo

1 CIFAR-10
0 25 50 75 100 125
Number of Epochs

CIFAR-10

= ResNet-18
= 32 NVIDIA V100 GPUs

* Mini-batch size: 4k
a=1,6=071=12

150 175 200

Validation Error

100 A
90 -
80 1
70 1
60 -
501
40
301

Y — = AR-SGD
— == SGP
—— SGP-SLOMO

-7 1
ImageNet™ ™
0 20 40 60 80
Number of Epochs
ImageNet
= ResNet-50

= 32 NVIDIA DGX-1servers
= Mini-batch size: 8k
a=1,8=071=48

1 WMT'16 En-De

Y

“ —-- AR-Adam
\\ === SGP

—— SGP-SLoMo

> ~
NN 5\
N -

I T

5 10 15 20 25
Number of Epochs
WMT'16

= Transformer
= 8 NVIDIA DGX-1 servers

= Mini-batch size: 200k

a=1,8=077=48

Empirical Results: Validation Accuracy

Faster Convergence, Better Validation Accuracy

Base Optimizer Original w/ SlowMo
Local SGD 91.73 93.20 +1.5%
CIFAR-10 0SGP 93.17 93.74 +0.6%
SGP 93.90 94.32 +0.4%
ARSGD 92.66 -
Base Optimizer Original w/ SlowMo
Local SGD 69.94 73.24 +3.3%
ImageNet OSGP 74.96 75.54 +0.6%
SGP 75.15 75.73 +0.6%
ARSGD 76.00 -

Empirical Results: Time / Iteration

ImageNet WMT'16 En-De
Base Original w/ SlowMo Base Original w/ SlowMo
Optimizer Optimizer
Local SGD 294 ms 282 ms Local Adam 503 ms 505 ms
OSGP 271 ms 271 ms SGP 1225 ms 1279 ms
SGP 304 ms 302 ms ARSGD 1648 ms -
ARSGD 402 ms -
SGP-SLoMo (o =1, =10.7) SGP-SLOMo (ax =1, =0.5)

. [5 5 s b -2.1225/-\

g o 2 g 13409 i 212003
= 3129 -75'6§ = 13201 /S 211752
2 310/ 75,53 2 / ~

s 2 Effectof T S 1300 ¢ 121150 %

S 308 N 7545 S S [2.1125 =

= N = = 1280 ’ ks

S 3067 N 7533 g J/ F2.11008

O 3041 A= Q 12607X [2.10752

E 75. E \ ,’f’ <

E 3021 °| ., E 1240 ¥~ 210507

80 100~ 25 50 75 100 125 150 175 200

T T

How to set Hyper-parameters a, [3?

o - 8947 8836 8654 84.17 80.76 945

93.0

91.62 91.32

Parameter sweep on CIFAR-10 dataset:

91.5

9250 192.32 = Largerglobal LRis better o =1

-90.0

9263 92.80 9251 * Thereis a best value of slow momentum g € [0.4,0.8]

-88.5

Slow learning rate o

93.32 93.05 93.04

-87.0

08 0.6 04 02 0
Slow momentum f3

Comparison with Double-Averaging Momentum

[Yu et al. ICML 2019] proposes to average momentum buffers as well as

model parameters

= Doubled/tripled communication costs

SlowMo achieves higher accuracy using less time

Algorithm Time/iteration Best Validation Acc.
AR-SGD 420 Ms 76.00%
SGP 304 MS 75.15%
SGP-double-avg 402 MS 75.54%
SGP-SlowMO 302 ms 75.73%

Thanks for attention!

SlowMo: Improving Communication-Efficient Distributed SGD
with Slow Momentum arXiv: 1910.00643

Code will be available soon. More questions: jianyuwi@andrew.cmu.edu,

https://arxiv.org/abs/1910.00643
http://Andrew.cmu.edu

