
The Edge of
Machine Learning

Aditya Kusupati
University of Washington

Bottom-up or Top-down?

1

Edge Machine Learning – Objectives

• To build a library of machine learning algorithms
• Which can be trained in the cloud
• But which will run on tiny IoT devices

ARM Cortex M0+
2

https://github.com/Microsoft/EdgeML

Microsoft’s EdgeML Library

• Compact tree, kNN and RNN algorithms for
classification, regression, ranking, time series etc.,

ProtoNNBonsai FastGRNNEMI-RNN
ICML’17 ICML’17 NeurIPS’18 NeurIPS’18

3

Recognizing “Hey, Cortana” in 1 KB

85

90

95

100

Wakeword-2

F1 Score

0

8

16

24

32

Wakeword-2

Model Size (KB)
FastGRNN

Proposed:

Uncompressed
FastGRNN
FastRNN

RNN

UGRNN

GRU

LSTM

Existing:

SpectralRNN

• Uncompressed FastGRNN outperforms state-of-the-art RNNs

• FastGRNN matches state-of-the-art RNN accuracies

4

Soft Threshold Weight Reparameterization
for Learnable Sparsity

Aditya Kusupati
Vivek Ramanujan*, Raghav Somani*, Mitchell Wortsman*

Prateek Jain, Sham Kakade and Ali Farhadi
5

6

Prateek

Raghav* Mitchell*Vivek*Aditya

Sham Ali

Motivation

• Deep Neural Networks
• Highly accurate
• Millions of parameters & Billions of FLOPs
• Expensive to deploy

• Sparsity
• Reduces model size & inference cost
• Maintains accuracy
• Deployment on CPUs & weak single-core devices

Privacy preserving
smart glasses

Billions of mobile
devices

7

Motivation

• Existing sparsification methods
• Focus on model size vs accuracy – very little on inference FLOPs
• Global, uniform or heuristic sparsity budget across layers

Layer 1 Layer 2 Layer 3

Params

FLOPs

20 100 1000

100K 100K 50K

Total

1120

250K

Sparsity – Method 1

Params

FLOPs

Sparsity – Method 2

20 100 100

100K 100K 5K

220

205K

Params

FLOPs

10 10 200

50K 10K 10K

220

70K
8

Motivation

“Can we design a robust efficient method to learn
non-uniform sparsity budget across layers?”

• Non-uniform sparsity budget – Layer-wise
• Very hard to search in deep networks
• Sweet spot – Accuracy vs FLOPs vs Sparsity
• Existing techniques

• Heuristics – increase FLOPs
• Use RL – expensive to train

9

Overview

• STR – Soft Threshold Reparameterization

• Learns layer-wise non-uniform sparsity budgets
• Same model size; Better accuracy; Lower inference FLOPs
• SOTA on ResNet50 & MobileNetV1 for ImageNet-1K
• Boosts accuracy by up to 10% in ultra-sparse (98-99%) regime

• Extensions to structured, global & per-weight
(mask-learning) sparsity

𝑆𝑇𝑅 𝐖𝑙 , 𝛼𝑙 = sign 𝐖𝑙 ∙ ReLU(𝐖𝑙 − 𝛼𝑙)

10

Existing Methods

Sparsity

Dense-to-sparse
training

Uniform sparsity
Non-uniform

sparsity

Sparse-to-sparse
training

Non-uniform
sparsity

SOTA;
Dense training cost

Hard to train;
Lower training cost

• Gradual Magnitude
Pruning (GMP)

• Heuristics – ERK
• Global Pruning/Sparsity

• STR - some gains from

sparse-to-sparse
• Learnable sparsity?

• DSR, SNFS, RigL etc.,
• Heuristics – ERK
• Re-allocation using

magnitude/gradient

• DNW & DPF

Hybrid

11

STR - Method

𝐻𝑇 𝑥, 𝛼 = ቊ
𝑥; 𝑥 > 𝛼
0; 𝑥 ≤ 𝛼

𝑆𝑇 𝑥, 𝛼 = ቐ
𝑥 − 𝛼; 𝑥 > 𝛼

0; 𝑥 ≤ 𝛼
𝑥 + 𝛼; 𝑥 < −𝛼

𝛼 = 2

12

STR - Method

𝑆𝑇 𝑥, 𝛼 = sign 𝑥 ∙ ReLU(𝑥 − 𝛼)

= sign 𝑥 ∙ ReLU(𝑥 − 𝑔(𝑠))

L-layer DNN, 𝒲 = 𝐖𝑙 𝑙=1
𝐿 , 𝐬 = 𝑠𝑙 𝑙=1

𝐿 and a function 𝑔(.)

𝒮𝑔 𝐖𝑙 , 𝑠𝑙 = sign 𝐖𝑙 ∙ ReLU(𝐖𝑙 − 𝑔(𝑠𝑙))

Type equation here.
𝒲←𝒮𝑔(𝒲, s)

13

STR - Training

Type equation here.

min
𝒲,𝐬

ℒ 𝒮𝑔 𝒲, 𝐬 , 𝒟 + 𝜆෍

𝑙=1

𝐿

𝐖𝑙 2
2 + 𝑠𝑙 2

2

• Regular training with reparameterized weights 𝒮𝑔 𝒲, 𝐬

• Same weight-decay parameter (𝜆) for both 𝒲,𝐬
• Controls the overall sparsity

• Initialize 𝑠; 𝑔 𝑠 ≈ 0
• Finer sparsity and dense training control

• Choice of 𝑔 .
• Unstructured sparsity: Sigmoid
• Structured sparsity: Exponential

14

STR - Training

Type equation here. 15

• STR learns the SOTA hand-crafted heuristic for threshold

• STR learns unique threshold values per-layer

STR - Training

Type equation here.

Threshold vs Epochs for Layer 10 - 90% sparse ResNet50 on ImageNet-1K

Layer-wise threshold – 90% sparse ResNet50 on ImageNet-1K 16

• STR learns the SOTA hand-crafted heuristic of GMP

• STR learns diverse non-uniform layer-wise sparsities

STR - Training

Type equation here.

Overall sparsity vs Epochs – 90% sparse ResNet50 on ImageNet-1K

Layer-wise sparsity – 90% sparse ResNet50 on ImageNet-1K 17

STR - Experiments

• Unstructured sparsity - CNNs
• Dataset: ImageNet-1K
• Models: ResNet50 & MobileNetV1
• Sparsity range: 80 - 99%

• Ultra-sparse regime: 98 - 99%

• Structured sparsity – Low rank in RNNs
• Datasets: Google-12 (keyword spotting), HAR-2 (activity recognition)

• Model: FastGRNN

• Additional
• Transfer of learnt budgets to other sparsification techniques
• STR for global, per-weight sparsity & filter/kernel pruning

18

Unstructured vs Structured Sparsity

• Unstructured sparsity
• Typically magnitude based pruning with

global or layer-wise thresholds

• Structured sparsity
• Low-rank & neuron/filter/kernel pruning

19

STR Unstructured Sparsity: ResNet50

• STR requires 20% lesser FLOPs with same accuracy for 80-95% sparsity

• STR achieves 10% higher accuracy than baselines in 98-99% regime

20

STR Unstructured Sparsity: MobileNetV1

• STR maintains accuracy for 75% sparsity with 62M lesser FLOPs

• STR has ∼50% lesser FLOPs for 90% sparsity with same accuracy

21

STR Sparsity Budget: ResNet50

• STR learns sparser
initial layers than the
non-uniform sparsity
baselines

• STR makes last layers
denser than all baselines

• STR produces sparser
backbones for transfer
learning

• STR adjusts the FLOPs
across layers such that it
has lower total inference
cost than the baselines

Layer-wise sparsity and FLOPs budgets for 90% sparse
ResNet50 on ImageNet-1K

22

STR Sparsity Budget: MobileNetV1

• STR automatically keeps
depth-wise separable
conv layers denser than
rest of the layers

• STR’s budget results in
50% lesser FLOPs than
GMP

Layer-wise sparsity and FLOPs budgets for 90% sparse
MobileNetV1 on ImageNet-1K

23

STR Budget Transfer: ResNet50

Method Top-1 Acc (%) Params Sparsity (%) FLOPs

Uniform 73.91 2.56M 90.00 409M

Budget from STR 74.13 2.49M 90.23 343M

Uniform 57.90 0.51M 98.00 82M

Budget from STR 59.47 0.50M 98.05 73M

Method Top-1 Acc (%) Params Sparsity (%) FLOPs

Uniform 74.00 2.56M 90.00 409M

ERK 74.10 2.56M 90.00 960M

Budget from STR 74.01 2.49M 90.23 343M

Uniform 68.30 1.28M 95.00 204M

Budget from STR 69.72 1.33M 94.80 182M

Budget from STR 68.01 1.24M 95.15 162M

• Gradual Magnitude Pruning (GMP) – Zhu & Gupta 2017

• Discovering Neural Wirings (DNW) – Wortsman et al., NeurIPS 2019

24

STRConv

25

STR Structured Sparsity: Low rank

𝐖 𝐖𝟏 𝐖𝟐∑

Train with STR on ∑

𝐖𝟏 𝐖𝟐∑

Typical low-rank
parameterization

෩𝐖𝟏
෩𝐖𝟐

26

More STR Adaptations

𝐖 ෩𝐖 ∑

• Neuron/Filter/Kernel pruning

• Global sparsity/pruning

• Per-weight mask learning

Train with

STR on ∑

𝐖

𝒮𝑔 𝐖𝑙 , 𝑠 = sign 𝐖𝑙 ∙ ReLU(𝐖𝑙 − 𝑔(𝑠))

𝒮𝑔 𝐖𝑙 , 𝐒𝑙 = sign 𝐖𝑙 ∙ ReLU(𝐖𝑙 − 𝑔(𝐒𝑙))
27

STR – Critical Design Choices

• Weight-decay 𝜆
• Controls overall sparsity
• Larger 𝜆 → higher sparsity at the cost of some instability

• Initialization of 𝑠𝑙
• Controls finer sparsity exploration
• Controls duration of dense training

• Careful choice of 𝑔(.)
• Drives the training dynamics
• Better functions which consistently revive dead weights

28

STR - Conclusions

• STR enables stable end-to-end training (with no additional
cost) to obtain sparse & accurate DNNs

• STR efficiently learns per-layer sparsity budgets
• Reduces FLOPs by up to 50% for 80-95% sparsity
• Up to 10% more accurate than baselines for 98-99% sparsity
• Transferable to other sparsification techniques

• Future work
• Formulation to explicitly minimize FLOPs
• Stronger guarantees in standard sparse regression setting

• Code, pretrained models and sparsity budgets available at

https://github.com/RAIVNLab/STR
29

