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Motivation

Memorization is ubiquitous in deep learning
Memorization puzzles our intuition on generalization

Memorization is harmful in practice (security / privacy concerns)



Memorization is ubiquitous in deep learning
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Memorization puzzles our intuition on generalization
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https://arxiv.org/abs/2002.03206

Memorization is harmful in practice

For example, users may find that the input “my social-security
number is...” gets auto-completed to an obvious secret (such
as a valid-looking SSN not their own), or find that other in- "
puts are auto-completed to text with oddly-specific details. So wy(n O\N\edge
triggered, unscrupulous or curious users may start to “attack” VS
such models by entering different input prefixes to try to mine
possibly-secret suffixes. Therefore, for generative text mod-
els, assessing and reducing the chances that secrets may be
disclosed in this manner is a key practical concern.

fig source: https://arxiv.org/abs/1802.08232
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Definition 2.4 (Differential Privacy). A randomized algorithm M with
domain NI*l is (g, §)-differentially private if for all S C Range(M) and
for all z,y € NI*¥l such that ||z - y||; < 1:

Pr[M(z) € S] < exp(e) Pr[M(y) € S] + 6,

fig source: https://www.nowpublishers.com/article/Details/TCS-042
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A Formal Framework for
Studying Memorization in
Deep Learning

High level intuition why memorization could be useful

Formal definition of “memorization” and “useful”



log(frecuency)

Could a memorized example be useful at all?
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A Formal Definition of Memorization

A: alearning algorithm (including architecture, optimizer, hyper-parameters)
S: atraining set

i (theindex of) a training example

mem(A,S,7) ;= Pr |h(z;) =vy;|— Pr |h(x;)=1y;
(A, S,14) h<—A(S)[ (z:) = yil hNA(S\i)[ (zi) = yil
If a model is able to correctly classify an example i with high

probability only when this example is included in the training
set, then this example is considered to be memorized.



Quantifying the Utility of a Memorized Example

A: alearning algorithm (including architecture, optimizer, hyper-parameters)
S: atraining set
i (theindex of) a training example

j-  (the index of) a test example

infl(A,S,i,j) = hi’élris)[h(x;-) = y;] — hNi’(g\i)[h(fE}) = y;]

If a model is able to correctly classify an example j with high
probability only when another example i is included in the
training set, then i is considered crucially important for j.

Note mem(.A, S,7) = infl(A,S,1, (z;,v:))
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Efficient Estimators for
Influence and Memorization

With the previous definitions, directly estimating the influence of n
training examples within standard deviation o requires training n/c?
models (e.g. 5M for n=50,000, 6=0.1).



Subsampled Influence Estimation

infl,,(A, S,i,2) = E 1inf1(A, Siugiy. 4, 2)]
I~P([n]\{i},m—1)

If we sample many different subsets, for each example i,

there are subsets containing i and subsets not containing i. SI — (:E,L s Yi ) icl
Therefore, training on each subset sample can be reused in

the influence estimation in multiple examples. Sub-sampled training sets



Subsampled Influence Estimation

Algorithm 1 Memorization and influence value estimators

Require: Training dataset: S = ((z1,91), ..., (Zn,Yn)), testing dataset Siest = ((27,91),...,(x),,y.,)), learning

@R N ek

algorithm A, subset size m, number of trials .
Sample ¢ random subsets of [n] of size m: Iy, Io, ..., ;.
fork=1tot do
Train model A by running 4 on Sy, .
for: =1ton do
H/la?nm(A, S,Z) = Prk,\,[t] [hk(ll) = Y ’ 1 E Ik] — Prkw[t] [hk(azz) = Y; | 1 Q Ik].
for j =1ton' do
infl,, (A, S,4,7) := Prpglhe(2)) = y; | i € Ix] — Pryopg[he(2}) = v; | i € Ix].
return mem,,(A,S, i) foralli € [n]; infl,,(A, S, 4, j) foralli € [n],j € [/].

Lemma 2.1. There exists an algorithm that for every dataset S € (X x Y)", learning algorithm A, m € [n] and
integer t, runs At times and outputs estimates (f1;);c[n) such that for every i € [n] and p = min(m/n,1 —m/n),
1 1 e~ Pt/16
infl S,i,2) — ps)?] < =
E [(infl,(A, S,i,2) — 13)?] < pri i I

where the expectation is with respect to the randomness of A and the randomness of the estimation algorithm.




lllustration of the Estimation Procedure

Training Pipeline
data-augmentation, regularization, 1
stable initialization, SOTA activation function,

fancy Ir schedule, momentum, preconditioning,
label smoothing, loss tempering, unsupervised aux loss

Random 70% subset

Repeat 2,000 Times



2,000 x 1,281,167
prediction correctness
for each example
after training

2,000 x 1,281,167

binary mask of which

train examples are
excluded




50,000 x 2,000 2,000 x 1,281,167
prediction correctness binary mask of which train
for each test examples examples are excluded

i-th column

Jj-th roW  infL, (A, 5,0 ) = Proglhu(e}) = v |i € L] — Prygglhe(a}) = v | ¢ T
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Case Studies
MNIST, CIFAR100 & ImageNet

Which examples are “memorized”?
Are the “memorized” examples useful?
Is the utility of “memorized” examples consistent with our intuition?



Visualization of Memorized Examples
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Are Memorized Examples Useful?

0.72 0.750 0.9925
o .__’.-—.—.\._—.-".—_.\”.
® 0.70 5 0.725 2 0.9920
= = o
o S 0.700 3 0.9915
© 0.68 remove memorized © ®

—8— remove random 0.675 0.9910
c - =
ke S 0.9905
£ 1.00 g 5 1.00 1.00
© © s
£ 0.75 / - £ 0.75 £E
(O] Q © ©
2 2 5E |
= 0.50 ‘s 0.50
g 0.2 0.4 0.6 0.8 1:0 g 0.2 0.4 0.6 0.8 1.0 wee 0.2 0.4 0.6 0.8 1.0

memorization value threshold memorization value threshold memorization value threshold
(a) ImageNet (b) CIFAR-100 (c) MNIST

Effect on the test set accuracy of removing examples with memorization value estimate above a given
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Why the Memorized Examples Are Useful?

Criterion: a pair (i,j) is selected if mem(i) > 0.25 and infl(i,j) > 0.15

MNIST | CIFAR-100 | ImageNet

# High influence pairs 35 1015 1641
# Unique test examples selected 33 888 1462
# Test examples influenced by a single training example 31 774 1298

Removing the 964 unique training examples in these pairs on CIFAR-100 reduces the test accuracy by
2.46 + 0.36%, which is comparable to the effect of removing 11,000 random examples. Essentially all
of that effect on the accuracy comes from the drop in accuracy on the test examples in the
high-influence pairs from 72.1 + 1.3% to 45.4 + 1.4%.

The benefits of memorized examples are fully captured by their high influence on individual test
examples.



Histogram of Influences in High-influence Pairs
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MNIST is a very easy dataset with low diversity in the input
examples. There are very few training examples that need to be
memorized, or could induce high influence on a test example.



Visualization of High-influence

Pairs on ImageNet
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Visualization of High-influence
Pairs on ImageNet
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Visualization of High-influence

Pairs on ImageNet
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Visualization of High Influence Pairs on CIFAR-100
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op-ranking
pairs on
CIFAR-100
are near
duplicates.

train

tr-29738;kangaroo
mem-score=1.01

tr-14941;squirrel
mem:-score=0.998

£r-42384;worm
score=1.000

tr-13383;rabl

bit
mem-score=0.945

tr-15486;bri

idge
mem-score=0.959

c

137420
mem.

4
-

range
000

test

7912 13630 18635
infl=0.996 infl=0.041 infl=0.040

i

1-9870 18782 1t-3808
infl=0.993 infl=0.075 infl=0.063

19581
infl=0.962

tt-4553
infl=0.040

1=0.038 =0.037

15078
infl=0.062

17485
infl=0.015

5889
infl=0.041

17199
infl=0.058

train

tr-34344;willow_tree
mem-score=0970

tr-6471;possum
mem-score=0.949

t-49356;dolphin
- .929

£r-26902;fox
mem-score=0.821

tr-45252;crab
mem-score=0.689

t-10719;mountain
mem-score=0.967

tr-24581;beaver
96!

mem-score=0.965

tr-42336;snail
992

test

11662
infl=0.909

3823

infl=0.908

19376
infl=0.891

16090
infl=0.877

18299
infl=0.870

4661
infl=0.028

13248
infl=0.045

116389
infl=0.112

4636
infl=0.045
]

46030
infl=0.031

4728
infl=0.075

]
5

5323 11501
infi=0.030 infl=0.028

1498
infl=0.028

142650
infl=0.033

19764
infl=0.036

15434
infl=0.031

19146
infl=0.027

4-9968
infl=0.023

11674
infl=0.070

18935
infl=0.041




High Influence Pairs on MNIST

Less interesting but still show some visual correlation, and some ambiguous /
mislabeled examples.
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Theoretical
Characterization

Construction of a simplified learning model with long tail data
distribution to demonstrate that optimal performance cannot
be achieved without memorization.



The cost of not fitting: a discrete case

To capture the main phenomenon we are interested in, we start by considering a simple and general prediction
problem in which the domain does not have any underlying structure (such as the notion of distance). The

domains X and Y are discrete, | X| = N and |Y'| = m (for concreteness one can think of X = [N] and
Y = [m)).

Theorem 2.3. Let 7 be a frequency prior with a corresponding marginal frequency distribution 7, and F
be a distribution over Y X. Then for every learning algorithm A and every dataset Z € (X xY)™

where

err(m,F,A| Z) > opt(m,F | Z) + Z 7 -lerrnz (A, £)
L€[n]

error on examples
E. -~ ot (1 —-a)"* that appears / times
E il [[ 7 (1( )Z—e] ] ; in the training set
a~TN o - —

Ty =

theorem from: https://arxiv.org/abs/1906.05271



The cost of not fitting: a discrete case

Theorem 2.3. Let 7 be a frequency prior with a corresponding marginal frequency distribution 7, and F
be a distribution over YX. Then for every learning algorithm A and every dataset Z € (X x Y)™:

err(m,F,A| Z) > opt(m,F | Z) + Z 7 -lerrnz (A, £),

£e[n]
where error on examp!es
_ Egqrn [a£+1 (1 - a)n—é] that appears / times
Te 1= 7 - In the training set
Eonzv [0 (1 —a)"™]

e tau_1can be lower bounded, with characterization of the tail distribution.
e The discrete setup can be extended to continuous case of mixture models.

theorem from: https://arxiv.org/abs/1906.05271
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Further Investigations

Are influence and memorization consistent across architectures?
In which layer does memorization happen?



Jaccard similarity

Jaccard similarity

Consistency of Estimation Across Architectures
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Comparing two estimations:

For each threshold &

->  Select the subset of examples using ¢ by
each of the estimation

->  Compare the two selected subsets by
Jaccard similarity (Intersection-over-Union)

->  Also compare by the average difference of
the estimations on the union of the two
selected subsets

Some variations are observed, but overall
the estimations are quite consistent
across different architectures.



In Which Layer Does Memorization Happen?
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The “body™:

computing the
representations

The “head”:
computing the
classification

The body is considered to be
computing feature
representations for the inputs
-- this feature is commonly
finetuned or even directly
reused in downstream tasks.

The head is usually a densely
connected linear layer, which
could have potentially
representation power to
memorize the label mapping.



Influence Estimation via “Transfer Learning”

The feature representation (trained on the full
@ training set) is fixed and re-used, only the head is
trained (from fresh random init each run).

L

Training Pipeline
data-augmentation, regularization, 1
stable initialization, SOTA activation function,

fancy Ir schedule, momentum, preconditioning,
label smoothing, loss tempering, unsupervised aux loss

—

Repeat 2,000 Times

Random 70% subset



Influence Estimation via “Transfer Learning”

If memorization indeed happens in the classifier layer, our “transfer-learning” style experiments
that trains only linear classifier on pre-trained representations could extract the influence
estimation at a much lower cost than training many full ResNet models.

19.9% 12.3 £ 0.3% 19.8£0.1%

ResNet50 trained on 4k ResNet50 trained 4k Linear Models
CIFAR-100 training set on 70% of CIFAR-100 trained on 70% of
training set CIFAR-100 training set

with pre-trained
features



Influence Estimation via “Transfer Learning”

Number of training examples with memorization estimates > 0.25:
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Conclusion

e A formal definition of memorization is given, efficiently
estimated and shown to be consistent with high level
intuition.

e Memorized examples are useful for test performance.

e The benefits of memorized examples are explained by
strong influence on individual test examples.

e The observations verified the theoretical model of
learning with long-tailed distribution [Fel19] in real data.

More visualizations and pre-computed influence scores for downloads: https://pluskid.github.io/influence-memorization/



https://pluskid.github.io/influence-memorization/

