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Understanding Deep Learning Phenomena

Principled approaches to theoretically and empirically investigate deep learning
phenomena, using tools from ML theory and statistics.

To understand when and why DNNs generalize, improve training and generalization
performance in state of the art deep learning models and extend the current success of
our models to new domains.

Our understanding of modern neural networks lags behind their practical successes. This
growing gap poses a challenge to the pace of progress.

Although there has been some progress in this area, still we are far from answering many
fundamental questions such as generalization capabilities of deep models and how to
ensure successful transfer to new domains.

I believe this understanding helps us extend beyond our current use of deep learning in a
reliable way.
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Motivation

One desired capability of machines is to transfer their knowledge or understanding of a
domain it is trained on (source domain) to another domain (target domain) where data is
(usually) scarce or a fast speed of convergence is needed.

Plethora of works using transfer learning in different applications.

We yet do not understand:

what enables a successful transfer?

which parts of the network are responsible for that?

In this paper we address these fundamental questions and propose new tools and analysis.
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Problem Setup

Target domains that are intrinsically different and
diverse:

CheXpert: a medical imaging dataset of chest
x-rays considering 5 different diseases.

DomainNet: designed to probe transfer learning for
diverse visual representations. The domains range
from real images to sketches, clipart and painting
samples. 345 classes
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Target domains that are intrinsically different and
diverse:

CheXpert: a medical imaging dataset of chest
x-rays considering 5 different diseases.

DomainNet: designed to probe transfer learning for
diverse visual representations. The domains range
from real images to sketches, clipart and painting
samples. 345 classes

Two initialization scenarios:

Pre-trained on ImageNet (Finetune)

Start from random initialization (RandInit)
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Notation

T: trained,

P-T: Pre-trained,

RI: random initialization.

Our four models are:

RI:random initialization

P: pre-trained model

RI-T: model trained on target domain from random initialization

P-T: model trained/fine-tuned on target domain starting from pre-trained weights
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Role of feature reuse

Human visual system is compositional and hierarchical.

Modern convolutional neural networks trained on large scale visual data are shown to
form similar feature hierarchies.

The benefits of transfer learning are generally believed to come from reusing the
pre-trained feature hierarchy.

But, why in many successful applications of transfer learning, the target domain could be
visually very dissimilar to the source domain?
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Role of feature reuse

Comparing RI-T to P-T learning curves

Largest performance boost on the real domain, which contains natural images.

Even for the most distant target domains such as CheXpert and quickdraw, we still
observe performance boosts from transfer learning.

The optimization for P-T also converges much faster than RI-T in all cases.

Experiment: We partition the image of the downstream tasks into equal sized blocks and
shuffle the blocks randomly. The shuffling disrupts visual features in those images.

chexpert
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Role of feature reuse

The final performance drops for both initializations
as the block size decreases, indicating the
increasing difficulty of the tasks.

The relative accuracy drop, decreases with reducing
block size on both real and clipart, showing
consistency with the intuition that decreasing
feature reuse leads to diminishing benefits.

On quickdraw, the relative accuracy drop does not
show a decreasing pattern. In quickdraw, the input
images barely contain any visual features.

Benefits of transferred weights on optimization
speed is independent from feature reuse.
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Role of feature reuse

Feature reuse plays a very important role!
especially when the downstream task shares similar
visual features with the pre-training domain.

There are other factors at play!
low-level statistics of the data that are not ruined in
the shuffling lead to the significant benefits of
transfer learning, especially on optimization speed.
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Opening the model: Investigating mistakes

Data samples where Finetune is incorrect and
RandInit is correct mostly include ambiguous
samples;

Data samples where Finetune is correct, RandInit is
incorrect are spread on easy samples too.

The mistaken examples between two instances of
Finetune are very similar. Two Finetune models are
more similar in the feature space.
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Opening the model: Feature similarity

We use CKA [Kornblith, Norouzi, Lee, Hinton, ICML19] as a measure of feature similarity.

Two instances of finetune model are highly similar across different layers.

The initialization point, drastically impacts feature similarity.

Although both networks are showing high accuracy, they are not that similar in the
feature space.

This emphasizes on role of feature reuse and that two finetune models are reusing the
same features.

models/layer conv1 layer 1 layer 2 layer 3 layer 4

P-T & P 0.6225 0.4592 0.2896 0.1877 0.0453

P-T & P-T 0.6710 0.8230 0.6052 0.4089 0.1628

P-T & RI-T 0.0036 0.0011 0.0022 0.0003 0.0808

RI-T & RI-T 0.0016 0.0088 0.0004 0.0004 0.0424
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Opening the model: Distance in parameter space

We measure `2 distance between two fine-tuned and two randinit models, both for whole
network and per module.

Randinit models are farther from each other compared to two fine-tuned models and this
trend can be seen in individual modules too.

The distance between modules increases as we move towards higher layers in the network.

It’s not just features, it’s parameters too!

domain/model 2 P-T 2 RI-T P-T & P RI-T & P

CheXpert 200.12 255.34 237.31 598.19
clipart 178.07 822.43 157.19 811.87
quickdraw 218.52 776.76 195.44 785.22

real 193.45 815.08 164.83 796.80
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Performance barriers and basins in the loss landscape

Generalization criterion: flatness of the basin of the loss landscape near the final solution

In a flat basin, the weights could be locally perturbed without hurting the performance,

In a narrow basin, moving away from the minimizer would quickly hit a barrier, indicated
by a sudden increase in the loss.

We explore the loss landscape of P-T and RI-T.

Let Θ and Θ̃ be all the weights from two different checkpoints. We evaluate a series of
models along the linear interpolation of the two weights:
{Θλ = (1− λ)Θ + λΘ̃ : λ ∈ [0, 1]}.
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Performance barriers and basins in the loss landscape

Any two minimizers of a deep network can be connected via a non-linear low-loss path.

Due to the non-linear and compositional structure of neural networks, the linear
combination of the weights of two good performing models does not necessarily define a
well behaved model, thus performance barriers are generally expected along the linear
interpolation path.

When the two solutions belong to the same flat basin of the loss landscape, performance
barrier is absent.

Interpolating two random solutions from the same basin could generally produce solutions
closer to the center of the basin, which potentially have better generalization performance
than the end points.
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Definition: Basin

Given a loss function ` : Rn → R+ and a closed convex set S ⊂ Rn we say that S is a
(ε, δ)-basin for ` if and only if S has all following properties:

1 Let US be the uniform distribution over set S and µS,` be the expected value of the loss `
on samples generated from US .

Ew∼US [|`(w)− µS,`|] ≤ ε

2 For any two points w1, w2 ∈ S, let f(w1, w2) = w1 + α̃(w2 − w1), where
α̃ = max

α≥0
: w1 + α(w2 − w1) ∈ S. Then,

Ew1,w2∼US ,ν∼N (0,(δ2/n)In)[`(f(w1, w2) + ν)− µS,`] ≥ 2ε

3 Let κ(w1, w2, ν) = f(w1, w2) + ν
‖f(w1,w2)−w1‖2

(f(w1, w2)− w1). Then,

Ew1,w2∼US ,ν∼N (0,δ2)[`(κ(w1, w2, |ν|))− µS,`] ≥ 2ε
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Performance barriers and basins in the loss landscape

We evaluate a series of models along the linear
interpolation of the two weights.

Performance barriers are generally expected
between two unrelated NN models.

In a flat basin, the weights could be locally
perturbed without hurting the performance.

Finetune models reside in the same basin.

RandInits end up in a different basin, even if
starting from same random seed.
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Performance barriers and basins in the loss landscape
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Figure: The left and middle panes show performance barrier measured by test accuracy on
DomainNet real and quickdraw, respectively. The right pane shows the performance barrier
measured by test AUC on CheXpert.
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Performance barrier experiments with identical initialization for RI-T
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Figure: Performance barrier of real, clipart, quickdraw, respectively, measured by test accuracy.
Like P-T, the two RI-T models are initialized from the same (random) weights.
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Performance barrier plots with extrapolation
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Figure: Performance barrier of real, clipart, quickdraw, respectively, measured by test accuracy.
The linear combination of weights are extrapolated beyond [0, 1] (to [−1, 2]).
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Cross-domain weight interpolation on DomainNet

when directly evaluated on a different
domain that the models are trained from,
we could still get non-trivial test
performance.

P-T consistently outperforms RI-T even in
the cross-domain cases.

when interpolating between P-T models,
(instead of performance barrier) we
observe performance boost in the middle
of the interpolation.

This suggests that all the trained P-T
models on all domains are in one shared
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Which pre-trained checkpoint is most useful for transfer learning?

Significant improvements are observed when we start from the checkpoints where the
pre-training performance has been plateauing.

Independence between the improvements on optimization speed and final performance.

You can start from earlier checkpoints in pre-training.
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Summary of Results

Both feature-reuse and low-level statistics of the data are important.

Finetune models make similar mistakes on target domain, they have similar features and
are surprisingly close in the `2 distance in parameter space.

Finetune models are in the same basins in the loss landscape, while models trained from
random initialization are in a different basin.

One can start from earlier checkpoints of pre-trained model without losing accuracy of
the fine-tuned model.
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Part II

Which part of the network is responsible for successful transfer?
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Recap: Not all layers are created equal!

Experiment:

Consider a deep neural network (at any training epoch).

Pick one of the layers and rewind its value back to its value at initialization.

Keep the value of all other layers fixed.

Notice the change in performance.

C. Zhang, S. Bengio, Y. Singer, Are all layers created equal?, Feb 2019
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Recap: Not all layers are created equal!

Observation: In a deep neural network, some modules are more critical than others, i.e.,
rewinding their parameter values back to initialization, while keeping other modules fixed at
the trained parameters, results in a large drop in the network’s performance.

C. Zhang, S. Bengio, Y. Singer, Are all layers created equal?, Feb 2019
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Generalization

Questions

What implications does this have for understanding generalization in neural networks?

Is the shape of the valley that connects the initial and final values of the module
parameters informative about generalization performance of an architecture?

Can we come up with a complexity measure based on the shape of this valley that
predicts generalization performance of an architecture?

26/ 40



Understanding Criticality

Figure: Performance degradation as we move on convex combination path from final to initial value of
modules. We find that along this path the training error (as well as test error and train loss) increases
monotonically from the final weights to initial weights. ResNet-18 architecture.
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Module Criticality

Loss values in the valleys that connect the initial weights θ0 to the final weights θF .

Module criticality: how far one can push the ball of radius r in the valley towards
initialization divided by the radius.
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Module Criticality

Non-critical modules ≡ wide valley
Critical modules ≡ sharp valley or the loss values start to increase when the ball becomes
too close to the initial weight.

Network criticality , sum of the module criticalities.
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Definition

Given an ε > 0 and network fΘ, define module criticality for module i:

µi(ε) := min
0≤αi,σi≤1

{
α2
i ‖θFi − θ0

i ‖2Fr
σ2
i

: Eu∼N (0,σ2
i )[LS(fθαi +u,ΘF−i

)] ≤ ε
}
,

θαi = (1− αi)θ0
i + αiθ

F
i , αi ∈ [0, 1]

σi is the radius of the ball around θαi .
LS denotes the empirical zero-one loss.

Define the network criticality as the sum of the module criticalities µε(fΘ) =
∑d

i=1 µi,ε(fΘ).
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Generalization Guarantees

Intuitively, being able to move closer to initialization values indicate that the effective
function class is smaller and hence the network should generalize better.

Using a PAC-Bayesian analysis we show that given m samples if train error is less than ε
then:

Test Error . ε+

√
1
4µ(ε) + log

(
m
δ

)
m
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Theorem

For any data distribution D, number of samples m ∈ N , for any 0 < δ < 1, for any
0 < σi ≤ 1 and any 0 ≤ αi ≤ 1, with probability 1− δ over the choice of the training set
Sm ∼ D the following generalization bound holds:

EU [LD(fΘα+U )] ≤ EU [LS(fΘα+U )] +

√√√√√ 1
4

∑d
i=1 ki log

(
1 +

α2
i‖θFi −θ0i ‖

2

Fr

kiσ2
i

)
+ log

(
m
δ

)
+ Õ(1)

m− 1
,

where ki is the number of parameters in module i. For example, for a convolution module with
kernel size qi × qi and number of output channels ci, ki = q2

i ci−1ci.
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Ranking architectures generalization performance

We show through extensive experiments that
module criticality is able to explain the superior generalization performance of some

architectures over others, whereas earlier measures fail to do so.

The intriguing role of module criticality in the generalization of deep networks,
N. Chatterji, B. Neyshabur, H. Sedghi, Spotlight in ICLR2020
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Analysis of criticality in the Transfer Learning
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Figure: Module criticality measured on CheXpert.
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Module criticality in transfer learning regime

Rewind analysis

Similar pattern to supervised learning case

The only difference is that the ‘FC’ layer becomes critical for P-T model which is expected.

Extension of definition

Look at both direct path between initial and final values

Look at optimization path (checkpoints)

Look at optimal value of weight matrices (instead of θFi , we investigate θopt
i )

Noise is proportional to Frobenius norm of the weight matrix

Proofs still hold.
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Plots for a critical and a non-critical module

(a) Module criticality Conv 1 (b) Module Criticality Layer 1

Figure: ResNet-50, transfer from ImageNet to ChexPert
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Summary of observations

As we move from the input towards the output, we see tighter valleys, i.e., modules
become more critical.

This is in agreement with observation of [Yosinski et al., 2014, Raghu et al., 2019] that
lower layers are in charge of more general features while higher layers have features that
are more specialized for the target domain.

(a) Module Criticality Layer1 (b) Module Criticality Layer4
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Conclusion and future work

We shed some light on what is being transferred in transfer learning and which parts of
the network are at play.

Our findings on basin in the loss landscape can be used to improve ensemble methods.

Our observation of low-level data statistics improving training speed could lead to better
network initialization methods.

Initialization with minimum information from pre-trained model while staying in the same
basin and whether this improves performance.

Implications of these findings for parallel training and optimization.

What is being transferred in Transfer Learning?,
B. Neyshabur*, H. Sedghi*, C. Zhang*, NeurIPS 2020
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