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Summary

• Background
• Large-scale long-tailed recognition in an open world
• Open compound domain adaptation



Background

• Deep learning looks so powerful!!



Problem

• Even the state-of-the-art methods are not good enough to handle 
realistic data in realistic settings!
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Problems

• Long-tailed

• Open-ended

• Multi-domain
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labeled data.
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Large amount of labeled data is even 
less possible.
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New classes will usually be on this side



Problems

• Long-tailed

• Open-ended

• Multi-domain
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Long-tailed distribution

• Modern deep learning techniques are based on large-scale balanced 
training datasets:
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Faces [Zhang et al. 2017] Places [Wang et al. 2017]

Actions [Zhang et al. 2019]Species [Van Horn et al. 2019]
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?
Open Long-Tailed Recognition

Open World

Imbalanced Classification

Few-shot Learning

Head Classes Tail Classes Open Classes

Open Set Recognition



Imbalanced Classification
(metric learning, re-sampling, re-weighting)

test train testtrain

Few-Shot Learning
(meta learning, classifier dynamics)

Open Set Recognition
(distribution rectification, out-of-distribution detection)

Open Long-Tailed Recognition
(dynamic meta-embedding)

testtrain train test
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DIRECT FEATURE

fc + tanh
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ImageNet-LT Benchmark

Absolute Performance Gain: ~20%

Places-LT Benchmark

MS1M-LT Benchmark

Absolute Performance Gain: ~10%

Absolute Performance Gain: ~2%



Few shot



Open compound domain adaptation
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Simulation Open World Driving Conditions
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Source domain

Simulation

(a) Unsupervised 
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Source Compound Targets Open Targets

Simulation Open World Driving Conditions
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C-Digits Benchmark
Absolute Performance Gain: ~5%

C-Faces Benchmark
Absolute Performance Gain: ~10%

C-Driving Benchmark
Absolute Performance Gain: ~2%

C-Mazes Benchmark
Absolute Performance Gain: ~30%
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Problem continues
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Thank you!
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