

Introduction and Motivation

e PPG separates policy and value function training into distinct phases

e To share or not to share features between policy and value networks?

o Pro: valuable information is shared between both networks

o Con:non-trivial interference between objectives

e PPG aims to achieve the best of both worlds

Importance of policy and value function feature sharing

Score

24
18 A
12 4

o o

N B O ©

e
\

o

N B O @

m O N 0 WO
1

A\
0

CoinRun

StarPilot

CaveFlyer

Dodgeball

120 1
15 |
10 1

N &~ O @

R
N

FruitBot

Chaser

Miner

Jumper

L)
D
2
A\

Leaper

Maze

BigFish

Heist

20 -
15 |
10 |

A
N

Climber

Plunder

Ninja

" BossFight

\
™

N &~ O @

16 -
12 A
8
4

¢

o w o v
A SR (M |

12 1

E

o4

100 0

100 0

Timesteps (M)

100

0 100

—— PPO, shared network (baseline)
—— PPO, separate networks

Experiments performed on Procgen Benchmark

Why use Procgen Benchmark?

e Many common RL benchmarks ignore generalization
e Do agents learn robust skills or memorize trajectories?

e Atari: high diversity across envs, but low diversity within

a single env

Design Principles

High diversity

Mimic the style of Atari (and Gym Retro) games

Fast evaluation (1000s steps/sec on single CPU core)
High level solvability (>99%)

Shared action space: 15 dimensional discrete

Shared observation space: 64x64x3 RGB

Score

20 1

10

20 1

10 1

0

Generalization from Finite-Level Training Sets

CoinRun StarPilot
8 20 -
6 - 10 A
FruitBot
8_ 20 A
15 -
6_
10 A
4 - ’ '
Climber
10.0
715_ 10.0‘ 2
5.04 ° 7.5 1
2.5 1 5.0 4

102 10° 10 10°

102 103 104 10°

102 10 10* 10°

10.0 1
7.51%
5.0 1

20

10 -

2:51.3

CaveFlyer

102 10° 10% 10°

Number of Levels

Dodgeball
10{, jui
5_
Maze
10.0 1 10.0 4
154 751§
5.0' . 5.0_
2.51
: 2.51
Ninja
8- 11 -
&) 10 -
41 il i

102 103 10* 10°

102 103 10% 10°

—— Train
—— Test

The Downside of Shared Networks

e The policy and value function must be trained on the same data (i.e. the same level of sample reuse)
e There will be some amount of interference between policy and value function objectives
e With PPG, we can:

o Reduce interference between policy and value function optimization

o More aggressively train of the value function (using higher sample reuse)

Phasic Policy Gradient (PPG) Overview

N

Policy Phase

Auxiliary Phase

o S

for each of R=32 rollouts:

Perform standard PPO update

Store all states and value targets in replay buffer

for each of E=6 epochs over replay buffer:

Optimize value function while cloning prior policy

Policy Phase Auxiliary Phase

Policy Network Value Network

07’(‘ evalue

Phasic Policy Gradient (PPG) Losses

Policy Phase:

Leir — T, [min(rt(e)/it, clip(r¢(6),1 — e, 1+ e)/it)} ri(0) = mo(at|st)

0414 (at|St)

T 1 “rtar
e =8 Y00 7]

Auxiliary Phase:

LjOint = L% 4 5clone : fEt [KL[Weold('|St)’ 7T9('|8t)”

I - “rtar
Lo = o By | (Va, () = Vi9)’]

Phasic Policy Gradient (PPG) Pseudocode

for phase = 1,2, ... do
Initialize empty buffer B
for iteration = 1,2,..., N, do > Policy Phase
Perform rollouts under current policy 7
Compute value function target V,**'¢ for each state s;

for epoch =1, 2,..,En do > Policy Epochs
Optimize L% + B5S[r] wrt 0,
for epoch = 1,2, ..., Fy do > Value Epochs

Optimize LY%*¢ wrt 6y,
Add all (s, V™) to B

Compute and store current policy 7y ,,(-|s¢) for all states s; in B

for epoch =1, 2, ...y Boua do > Auxiliary Phase
Optimize L7 wrt 6., on all data in B
Optimize LY¥*¢ wrt 6y, on all data in B

Hyperparameters
N__ controls the length of each policy phase.
E._and E, control the (policy phase) sample reuse for the policy and value function respectively
Note: E,, influences the training of the true value function, not the auxiliary value function.
E. ., controls the number of auxiliary epochs performed across all data in the replay buffer.
Itis usually by increasing E_ , rather than E,, that we increase sample reuse for value function training.

Bone CONtrols the relative weight of the auxiliary objective and the policy stabilization objective.

PPO vs PPG

Performance improvement is consistent
PPO baseline is well tuned

Policy sample reuse is similar to baseline
Value function sample reuse is ~2x baseline

We need careful ablations to understand the source of
the improvement

0.8 1

0.7 1

0.6 1

0.5 1

0.4 1

0.3

0.2 1

0.1+

0.0 1

Mean Normalized Performance

0 20 40 60 80 100

Comparison to PPO

CoinRun StarPilot CaveFlyer Dodgeball Mean Normalized Performance
12 0.8 1
24 A 12 A
81 18 1 91
12] 7
6 6 0.7
6 3
" FruitBot =~ Chaser ' Miner ' jumper 0.6
24 + 9 - 12 1
6 m
18
5] 6 4l 0.5
6 1 34 24
01 l L I l 0.4
Leaper Maze BigFish Heist
32 A
9 1 J 6
8 24 0.3 A
6 6 4 16 - 4
3 4 - 2 0.2 A
" Climber © 7 Plunder ~ ° Ninja ' BossFight
101 12
i i 0.1
9 16 91
ol 12 1 &
8 1 J
5] 3. 0.0
41 0
0 100 0 100 0 100 0 100 0 20 40 60 80 100
Timesteps (M) — PBO

—— PPG

PPO Sample Reuse (policy and value function)

Separate networks: can vary sample reuse for pi/vf,
but performance is very poor.

PPG allows us to vary pi/vf sample reuse while sharing
features.

Anecdotally, sharing representations is more important
in complex visual environments

For PPO, sample reuse = 3 is empirically optimal

0.6 1

0.5 1

0.4 1

0.3 1

0.2 1

0.1 1

0.0 1

Mean Normalized Performance

sample reuse = 1
—— sample reuse = 2
—— sample reuse = 3
——— sample reuse = 4
sample reuse =5
sample reuse = 6

0 20 40 60 80 100

Score

N &~ O ©
T VA Sl

18 1
12 4

For PPO, sample reuse = 3 is empirically optimal

N &~ O @
PR T

CoinRun StarPilot CaveFlyer Dodgeball Mean Normalized Performance
A 0.5
FruitBot Jumper
0.4
0.3 -
Leaper Maze BigFish
0.2
P 14 sample reuse = 1
" Climber " BossFight 0.14 —— sample reuse = 2
1 M —— sample reuse = 3
1270010 —— sample reuse = 4
il it —— sample reuse = 5
1) ' sample reuse = 6
0 0 100 0 20 40 60 80 100

Timesteps (M)

Policy Sample Reuse

Higher policy sample reuse isn't beneficial
So why does PPO benefit from higher sample reuse?
VF sample reuse has two possible benefits:
o Reduce policy gradient variance
o Train better representations
Why are additional policy epochs harmful in PPG?
o Qverfitting?

o Destructively large updates?

0.8 1

0.7 1

0.6 1

0.5 1

0.4 1

0.3 1

0.2 1

0.1 1

0.0 1

Mean Normalized Performance

0 20 40 60 80 100

Score

Higher policy sample reuse isn't beneficial

CoinRun StarPilot CaveFlyer Dodgeball Mean Normalized Performance

FruitBot " Chaser

o
PR

N & O @
P Sy (eI

100 0 100 0 20 40 60 80 100

Timesteps (M)

Value Function Sample Reuse

Controlled by # epochs / auxiliary phase (E_)

Higher E_ runs the risk of overfitting to recent data

Lower E_ can lead to slower training

Each loss, LM and L34 offers different improvement
LI = L% + Beione - By [K L{mg, 4 (-|5t), mo(-|5¢)]]
Dot =By [(Vay) = V92| L = 1B [, (s — 93

Note: we don't rebootstrap value targets

Impact of UM and L2 |ikely to vary by environment

0.8 1

0.6 1

0.5 1

0.2 1

0.1 1

0.0 1

Mean Normalized Performance

Eaux =9

20 40 60 80 100

Score

Higher value function sample reuse improves sample efficiency

CoinRun StarPilot CaveFlyer Dodgeball Mean Normalized Performance
-— e T d 0.8 o
//*' 12
8 1 / 9
" : 6 0.7 1
- 3 4
. F 0k - ,
FruitBot Jumper 0.6 1
24 - " S 1
P 9 =l
18 - 6
12 4 0.5 1
6 3 24 J
0 SR o % . 0.4
Leaper Maze BigFish Heist
v v ."of"’"‘ 6
B 0.3
6 - 4
o 81 L 0.2
21 0- 2 i :
Plunder " Ninja ' BossFight
10 ———FF :
91 8- - Lontel BB
6 - 6 1 6
4 J 0.0 1
31 3
‘ 24 04
100 O 100 O 100 0 20 40 60 80 100

Timesteps (M)

Comparing L3¢ and Li°"

e We can remove LY from the auxiliary phase

e Afterre-

adjusting £ __, ., performance barely suffers

JJoint _ 1aux + Beione *]Et [KL[ﬂ'gold('|St),7Tt9('|5t)]]

. |1
Lvalue :Et 5

Vi (s1) = 092 | o0

1
2

By (Vo (s0) = 7,2

0.8 |

0.7 1

0.6 1

0.5 1

0.4 |

0.3 1

0.2 1

0.1+

0.0 1

Mean Normalized Performance

—— PPG baseline; Eyage = 1

—— remove Lyge in aux phase; Eyaye = 3

20 40 60 80 100

Score

Comparing L'@"“¢ and Lo

CoinRun StarPilot CaveFlyer Dodgeball Mean Normalized Performance
12 0.8 1
24 - 12 -
81 18 - S 9
12 6 ! 7
6 6 0.7
6 3 3
" FruitBot =~ Chaser |~ Miner ' Jumper 0.6
24 - : 12 -
R 9 6 T
] 6 9 4 0.5
6 .
6 1 3 3] 24
o . 4 T | J 041
Leaper Maze BigFish Heist
9 - 132 1 |
8 1 24 4 6 0.3 7
61 6- 16 41
31 a- g 1 o 02
" Climber °~ Plunder = Ninja BossFight
10
9 - 16 - 8- 12 1 0.1+
12 1 #
6 1 61 6
8 1 4 J
3] 3 0.0
41 21 0-

o4

100 0

100 0

100 0

100

Timesteps (M)

0

20 40 60 80 100

—— PPG baseline; Eyajye = 1
—— remove Lyaje in aux phase; Evae = 3

Auxiliary Phase Frequency

Our earlier iterations alternated between policy and
value function training after every rollout

Each auxiliary phase causes to some interference
Infrequent aux phases: stale representations
Frequent aux phases: too much interference
Policy sensitivity likely to vary by environment

Ideally we would unify phases

0.8

0.7 4

0.6 1

0.5

0.4 1

0.3+

0.2 1

0.1+

0.0 1

Mean Normalized Performance

Ny =

Ny =4
Np =8
Np = 16

Np = 32

100

Score

CoinRun StarPilot CaveFlyer Dodgeball
s 124 A o o - o
8 1 /M 18 4 /ﬂ«u 9 9 g,
12 6 _
| / 34, /
" FruitBot " Chaser " Jumper
-y P aad FY a2 .| 64 o
184 [y ' 5
/ B
12 °1 4 ° g
| 44 6
6 - //’ / d
2 31/
01 ‘ ; Al ;
Leaper Maze BigFish Heist
—— 32 {_ponar™
8- 81 / il .Mv" /
J . f
j 6 16 M
2 &1 2] / 1V
’ 04 v
" Climber Plunder ~ ~ Ninja ' BossFight
10 1 2
7 “,‘,- ’
8 | W
6 .
44 |
24|

Increasing auxiliary phase frequency degrades performance

100

0.7 1

0.6 1

0.5 |

0.4+

0.3 1

0.2 1

0.1 1

0.0 1

Mean Normalized Performance

0 20

Timesteps (M)

KL Penalty vs Clipping

Mean Normalized Performance

0.8 1

e PPO originally also proposed an adaptive KL penalty - | ///,.,/

e KL penalty and clipping are both designed to prevent b6

destructive updates to the policy
0.5 1

e Both objectives penalize the policy for updating too quickly ol

e [t controls the weight of the KL penalty

e In practice, the KL penalty performs similarly to clipping 0.2

e Future work may wish to build upon either objective 011

Lcl'ip —]Et [min(’f't(e)Ah clip(n(@), 1-— €, 1+ G)At)]

0 20 40 60 80 100

—— PPG with clipping

A A T\ Q¢S
LKL =]Et [_At 9(t| t) + /871- . KL[’]Tgold('ISt),Wg('lst)]} —— PPG with KL penalty
601 (Gt]5t)

Single Network PPG

By default, PPG uses 2x memory as PPO

Single Network PPG halves memory footprint, with
only slight drop in performance

Key idea: detach value function gradient during policy
phases

Both variants of PPG:
o Have no policy gradient interference
o Benefit from sharings representations

Single Network PPG uses less wall clock time

0.8 1

0.6 1

0.4 1

0.3 1

0.2 1

0.1 1

0.0 1

Mean Normalized Performance

PPO
—— PPG, dual network (default)
—— PPG, single network

20 40 60 80 100

Score

Single Network PPG

CoinRun StarPilot i CaveFlyer Dodgeball
24 1 12
s 18 1 1 9
6 - 12 1 61 6
6 - i 3
44 0 3
FruitBot " Chaser =~ Miner Jumper
21 9 12 5
18 1
12 . 4] a
6 .
61 31 .. 2
0 L T T T T T T T T
Leaper Maze BigFish Heist
] 81
g = 32
24 - 6
6 1 . N
6 16 ol
1 i 8
3 4 o] 24
" Climber =~ ' Plunder =~ Ninja BossFight
20 - 101 12
5 2 o] o] AT
61 12 61 64
- 8 4 g
. 40 2 Jod, |
0 100 O 100 O 100 0 100

Timesteps (M)

Mean Normalized Performance

0.8 -

0.7 1

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1

0.0 -

PPO
PPG, dual network (default)
PPG, single network

0

20

60 80 100

PPG Benefits

e Share features between policy and value function, while mitigating policy interference during training
e Independently vary sample reuse of the policy and the value function

e Maximally utilize the value function as an auxiliary objective

PPG Drawbacks

e Increase parameter count by a factor of 2 (can be avoided with Single Network PPG)

e Increased sample reuse leads to increased wall clock time

Thanks for listening!
e Special thanks to my co-authors John Schulman, Jacob Hilton and Oleg Klimov.

e C(Check out PPG code here:

https://github.com/openai/phasic-policy-gradient

