Towards General Purpose Learned Optimizers

Luke Metz (@Luke_Metz)

Outline

- 1. Motivation
- 2. Problem Setup
- 3. Task specific learned optimizers
- 4. General purpose learned optimizers
- 5. Future

Outline

- 1. Motivation
- 2. Problem Setup
- 3. Task specific learned optimizers
- 4. General purpose learned optimizers
- 5. Future

Deep learning

engineering features

SIFT (Lowe et. al. 1999) HOG (Dalal et. al. 2005)

learning features

LeNet (LeCun et. al. 1998) AlexNet (Krizhevsky et. al. 2012)

Deep learning

engineering features

SIFT (Lowe et. al. 1999) HOG (Dalal et. al. 2005)

learning features

LeNet (LeCun et. al. 1998) AlexNet (Krizhevsky et. al. 2012)

Meta learning

engineering to learn

SGD (Robbins et. al. 1951, Bottou 2010) Autoencoders (Hinton et. al. 2006)

learning to learn

Learning To Learn (Hochreiter et. al. 2001) Learned Optimizers (Andrychowicz et. al. 2016, Li et. al. 2016, Wichrowska et. al. 2017, Metz et. al. 2018, 2019)

Design at a higher level of abstraction

Existing methods

Currently:

- Meta-Learning ≈ few-shot learning
- Many do not generalize!
 - Trained and tested on narrow task distributions
 - Not flexible, will not generalize
 - Not general purpose tools

Goal: generalizable, reusable, robust learned learning algorithms

Trained once, applicable everywhere, no tuning necessary

Learned optimizer research

Optimizer

- Among the most widely used methods in ML++
- Current methods are hand designed
- Perfect test beds for meta-learning
 - Simple API -- gradients in, weight updates out

Outline

- 1. Motivation
- 2. Problem Setup
- 3. Task specific learned optimizers
- 4. General purpose learned optimizers
- 5. Future

 w^0

 θ Outer-training. Meta-Training. Update

• Target the objective we care about

Optimize our optimizer for:

• Training loss?

Optimize our optimizer for:

- Training loss?
- Validation loss?

Optimize our optimizer for:

- Training loss?
- Validation loss?
- Performance on different distributions?
 - e.g. for robustness / out of distribution generalization?

Using learned optimizers to make models robust to input noise

Luke Metz¹ Niru Maheswaranathan¹ Jonathon Shlens¹ Jascha Sohl-Dickstein¹ Ekin D. Cubuk¹

Parametric update (U): Per parameter NN

Parametric update (U): Per parameter NN

Distribution of tasks

- Defines the types of tasks learned optimizer performs well on.
- No free lunch for optimization
 - All possible tasks --> no gains
 - Narrow distribution -> more gains

Outer-optimization is hard

- **Expensive** to compute a single outer-function evaluation
- Outer-function evaluations are **noisy**
- Outer-function is **complex** [U(U(U(U(.....))))]

Meta-learning based approaches: limited success & require specialized "tricks"

Outer Training Methods

Black box

- Random search
- Hyperparameter optimization
- Reinforcement learning
- Evolution

Outer Training Methods

Black box

- Random search
- Hyperparameter optimization
- Reinforcement learning
- Evolution

Gradients

Whole training process is differentiable

U(U(U...;θ);θ);θ)

"Unroll" optimization -> compute gradients -> SGD

Truncated Backpropagation Through Time

• Split sequence into multiple pieces

Truncated Backpropagation Through Time

• Split sequence into multiple pieces

- More gradients (one computed per truncation)
- Better behaved loss surface
Truncated Backpropagation Through Time

• Split sequence into multiple pieces

- More gradients (one computed per truncation)
- Better behaved loss surface
- Biased!

Conflicting Goals in Unroll Lengths

- Long unroll steps per truncation
 - Less biased
 - Each iteration is slower
 - Horrible loss surface -> exploding gradients

- Fast to train
- Well behaved loss surfaces
- More biased

Understanding and correcting pathologies in the training of learned optimizers

Luke Metz¹ Niru Maheswaranathan¹ Jeremy Nixon¹ C. Daniel Freeman¹ Jascha Sohl-Dickstein¹

Evolutionary Strategies / Variational optimization

- Define a distribution over learned optimizer parameters
- Optimize the parameters of this distribution

$$\mathcal{L}\left(\theta\right) = \mathbb{E}_{\tilde{\theta} \sim \mathcal{N}\left(\theta, \sigma^{2}I\right)} \left[L\left(\tilde{\theta}\right) \right]$$

Two unbiased gradient estimators

$$\nabla_{\tilde{\theta}} \mathcal{L}(\tilde{\theta}) = ?$$

Evolutionary Strategies (ES) Score Function

$$g_{\rm es} = \frac{1}{S} \sum_{s} L\left(\tilde{\theta}_s\right) \nabla_{\theta} \left[log\left(N\left(\tilde{\theta}_s; \theta, \sigma^2 I\right)\right) \right]$$
$$\tilde{\theta}_s \sim N\left(\theta, \sigma^2 I\right)$$

$$\mathcal{L}\left(\theta\right) = \mathbb{E}_{\tilde{\theta} \sim \mathcal{N}\left(\theta, \sigma^{2}I\right)} \left[L\left(\tilde{\theta}\right) \right]$$

Two unbiased gradient estimators

$$\nabla_{\tilde{\theta}} \mathcal{L}(\tilde{\theta}) = ?$$

Evolutionary Strategies (ES) Score Function

Reparameterization Gradient (RP)

$$g_{\rm es} = \frac{1}{S} \sum_{s} L\left(\tilde{\theta}_s\right) \nabla_{\theta} \left[log\left(N\left(\tilde{\theta}_s; \theta, \sigma^2 I\right)\right) \right]$$
$$\tilde{\theta}_s \sim N\left(\theta, \sigma^2 I\right)$$

$$g_{\rm rp} = \frac{1}{S} \sum_{s} \nabla_{\theta} L \left(\theta + \sigma n_{s}\right)$$
$$n_{s} \sim N \left(0, I\right)$$

Different gradient variance

- Smooth loss surface -> reparameterization has lower variance
- High curvature loss surface -> ES has lower variance

Different gradient variance

- Smooth loss surface -> reparameterization has lower variance
- High curvature loss surface -> ES has lower variance

Different gradient variance

- Smooth loss surface -> reparameterization has lower variance
- High curvature loss surface -> ES has lower variance

Outline

- 1. Motivation
- 2. Problem Setup
- 3. Task specific learned optimizers
- 4. General purpose learned optimizers
- 5. Future

Task specific learned optimizers

• Is research into learned optimizers worth it?

Understanding and correcting pathologies in the training of learned optimizers

Luke Metz¹ Niru Maheswaranathan¹ Jeremy Nixon¹ C. Daniel Freeman¹ Jascha Sohl-Dickstein¹

Task specific learned optimizers

• Is research into learned optimizers worth it?

Understanding and correcting pathologies in the training of learned optimizers

Luke Metz¹ Niru Maheswaranathan¹ Jeremy Nixon¹ C. Daniel Freeman¹ Jascha Sohl-Dickstein¹

Outer-test example problem

- Learned (train outer-objective)
- Learned (valid outer-objective)
- Momentum
- Adam
- RMSProp
- Adam+Reg+Decay (valid outer-objective)
- Adam+Reg+Decay (train outer-objective)

Outer-test example problem

- Learned (train outer-objective)
- Learned (valid outer-objective)
- Momentum
- Adam
- RMSProp
- Adam+Reg+Decay (valid outer-objective)
- Adam+Reg+Decay (train outer-objective)

Outer-test example problem

- Learned (train outer-objective)
- Learned (valid outer-objective)
- Momentum
- Adam
- RMSProp
- Adam+Reg+Decay (valid outer-objective)
- Adam+Reg+Decay (train outer-objective)

Outline

- 1. Motivation
- 2. Problem Setup
- 3. Task specific learned optimizers
- 4. General purpose learned optimizers
- 5. Future

General purpose == Out of distribution generalization

- Works out-the-box on new tasks
- No tuning necessary

Out of distribution generalization

- Learned (train outer-objective)
- Learned (valid outer-objective)
- Momentum
- Adam
- RMSProp

Out of distribution generalization

Convnet ---> Fully connected

- Learned (valid outer-objective)
- Momentum
- Adam
- RMSProp

Training on 1 task....

Training on 1 task....

Let's 5,000x that

TaskSet: A dataset of tasks

Using a thousand optimization tasks to learn hyperparameter search strategies

Luke Metz¹ Niru Maheswaranathan¹ Ruoxi Sun¹ C. Daniel Freeman¹ Ben Poole¹ Jascha Sohl-Dickstein¹

Samplers

@registry.task_registry.register_sampler("conv_pooling_family")
def sample_conv_pooling_family_cfg(seed: int) -> ConvPoolingConfig:
 """Sample a task config for a conv net with pooling model on image da

These configs are nested python structures that provide enough inform to create an instance of the problem.

Args: seed: int Random seed to generate task from. Returns: A nested dictionary containing a configuration. rng = np.random.RandomState(seed) $cfg = \{\}$ layer_choices = [1, 2, 3, 4, 5] max_layer = np.max(layer_choices) n_layers = rng.choice(layer_choices) stride_pattern = rng.choice(["all_two", "one_two", "two_one"]) if stride_pattern == "all_two": cfg["strides"] = ([2] * max_layer)[0:n_layers] elif stride_pattern == "one_two": cfg["strides"] = ([1, 2] * max_layer)[0:n_layers] elif stride_pattern == "two_one": cfg["strides"] = ([2, 1] * max_layer)[0:n_layers] cfg["strides"] = list(zip(cfg["strides"], cfg["strides"])) cfg["hidden_units"] = [utils.sample_log_int(rng, 8, 64) for _ in range(n_layers) cfg["activation"] = utils.sample_activation(rng) cfg["w_init"] = utils.sample_initializer(rng) cfg["padding"] = [

str(rng.choice([snt.SAME, snt.VALID])) for _ in range(n_layers)
]
cfg["pool_type"] = str(rng.choice(["mean", "max", "squared_mean"]))
cfg["use_bias"] = bool(rng.choice([True, False]))
cfg["dataset"] = utils.sample_image_dataset(rng)
cfg["center_data"] = bool(rng.choice([True, False]))
return cfg

```
Config
```

"strides": Г [2, 2][2, 2], [2, 2],"hidden_units": [15, 47, 22, 28], "activation": "tanh". "w_init": Г "he_uniform", null "padding": ["SAME", "SAME", "VALID"], "pool_type": "max". "use_bias": true. "dataset": ["food101_32x32", "bs": 8. "just_train": false, "num_train": null }, null "center_data": true

Code

```
def build(batch):
  """Builds the sonnet module."""
  image = utils.maybe center(cfg["center dat
  net = snt.nets.ConvNet2D(
      hidden units,
      kernel shapes=[(3, 3)],
      strides=cfg["strides"],
      paddings=cfg["padding"],
      activation=act fn,
      use bias=cfg["use bias"],
      initializers=init,
      activate final=True)(
          image)
  if cfg["pool type"] == "mean":
    net = tf.reduce mean(net, axis=[1, 2])
  elif cfg["pool type"] == "max":
    net = tf.reduce_max(net, axis=[1, 2])
  elif cfg["pool type"] == "squared mean":
    net = tf.reduce mean(net**2, axis=[1, 2]
  logits = snt.Linear(batch["label onehot"].
  loss vec = tf.nn.softmax cross entropy wit
      labels=batch["label onehot"], logits=l
```

return tf.reduce_mean(loss_vec)

Sampling tasks

- Image supervised
 - MLP classification
 - Conv with FC last
 - Conv pooling
- Image unsupervised
 - MLP autoencoders
 - MLP variational autoencoders
 - Non volume preserving flows
 - Masked autoregressive

- Language supervised
 - RNN text classification
- Language unsupervised
 - Character language modeling RNN
 - Word language modeling RNN
- Synthetic
 - Set of synthetic tasks from Wichrowska 2017 et. al.
 - Quadratic tasks possibly with nonlinearity

Outer-generalization to new tasks is key

- Ideally we train on the problems we care about (e.g. large ResNets).
 - This is too expensive! Have to make trade offs.

Normalization of tasks

- Wildly different loss scales across problem
- Need to normalize so each task has same "weight"

Normalization of tasks

- Wildly different loss scales across problem
- Need to normalize so each task has same "weight"

- Train task with Adam in different configurations
- Linearly interpolate between initial loss (1.0) and the lowest loss (0.0)
- Clip between (-2, 2)

Hypothesis: More tasks leads to better training

Hypothesis: Outer-training on a diverse set of tasks will allow our learned optimizers to generalize to larger problems.

Improved Learned Optimizer Architectures

Architectures: Per parameter NN based update rules

Metz, Luke, et al. "Understanding and correcting pathologies in the training of learned optimizers." *ICML 2019*

Architecture: Hierarchical

Architecture: Hierarchical

Improved architectures train faster

Compute / Outer Optimization

Things are starting to get interesting!
How does it do?

- Comparing optimizers: hard
- Comparing learned optimizers: EXTRA HARD

How does it do?

- Comparing optimizers: hard
- Comparing learned optimizers: EXTRA HARD

Distribution of IID problems (usual train / test performance)

Out of distribution

Controlled out of distribution

Controlled out of distribution

Large Image model transfer

14 layer ResNet on CIFAR-10

Large Image model transfer

Training new learned optimizers

This is *almost* to the point where I would want to use this for my research.

Learned, implicit regularization

$$f(x,y) = \frac{1}{2} \left(x - y \right)^2$$

Outline

- 1. Motivation
- 2. Problem Setup
- 3. Task specific learned optimizers
- 4. General purpose learned optimizers
- 5. Future

Make learned optimizers more accessible

- Too expensive
 - prototype model that runs on TPU promising
- More reliable, better generalization
- More power -- get more performance out of optimizers
 - With better features? Second order?
 - Better models?

Future of learned learning algorithms

- I believe we are at the brink of an "AlexNet" like moment
- Learned optimizers are almost usable to me in my own research
- Optimizers are just the beginning

My Awesome Collaborators

Niru Maheswaranathan

Ruoxi Sun

Daniel Freeman

Ben Poole

Jascha Sohl-Dickstein

Jeremy Nixon

Thanks!

Questions + Discussion?