

PULSE:

Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

Sachit Menon, *Columbia University/Duke University* November 2020

- 1. Motivation/Problem Statement
- 2. Latent Space Exploration
- 3. Results
- 4. Bias

- $\circ~$ High-resolution image data often difficult to obtain
- $\circ~$ Consumer demand for high-resolution image capture higher than ever before
- Many downstream tasks require high-resolution images

image super-resolution

Construct high-resolution (HR) images from corresponding low-resolution (LR) input

Challenges

- $\circ\,$ Problem of recovering true HR image depicted by an LR input inherently ill-posed
 - $\,\triangleright\,$ Number of such images grows exponentially with scale factor

(Baker and Kanade 2000)

many HR images can correspond to same LR image

Prior Work

traditional methods

Supervised convolutional neural networks (CNNs) using (LR, HR) pairs (e.g., FSRNet)

- Some research extends this to optimize on metrics intended to encourage realism (e.g., FSRGAN)
 - \triangleright "Drags" solution closer to natural image manifold $\mathcal{M} \subset \mathbb{R}^{M \times N}$

New Paradigm

goal

Generate realistic images within the set of feasible solutions i.e., find points in $\mathcal{M} \cap \mathcal{R}$: points on \mathcal{M} that also downscale correctly

 $\mathcal{R}\colon$ set of images that downscale correctly

Given
$$I_{LR}$$
 & $\epsilon > 0$, want $I_{SR} \in \mathcal{M}$
s.t.
 $\|DS(I_{SR}) - I_{LR}\|_p \le \epsilon$

 $DS(\cdot)$: Downscaling operator

Latent Space Exploration

idea Use generative models!

Given generator G with latent space \mathcal{L} (i.e., $G : \mathcal{L} \to \mathbb{R}^{M \times N}$), find $z \in \mathcal{L}$ with $\|DS(G(z)) - I_{LR}\|_{P}^{p} \leq \epsilon$

Latent Space Exploration

- \circ For $G(z) \in \mathcal{M}$, must be in region of \mathcal{L} seen during training
- intuitive idea: Add a loss term for the negative log-likelihood of the prior
 Doesn't work!
- soap-bubble effect: Most of the mass of a high-dimensional Gaussian is located near the surface of a sphere of radius \sqrt{d}

- Used StyleGAN (Karras et al. 2019) as generative model due to capacity to generate sharp images
- $\circ~$ Used 100 steps of spherical gradient descent with a learning rate of 0.4 starting with random initialization
- Can generate samples with global variation using new initializations and with fine-level variation using inherent stochasticity of StyleGAN

StyleGAN

10

Results

11

Results

noise

downscale

- $\circ~$ New problem formulation for super-resolution
- $\circ~$ Novel algorithm for addressing the super-resolution problem
 - \triangleright Creates high-quality images at higher resolutions (1024 \times 1024 vs 128 \times 128) and higher scale factors (32× vs 8×) than state-of-the-art
 - $\triangleright\,$ Keeps up with advances in generative modeling without fundamental changes

- Immediate sources:
 - Pretrained generative model
 - ▷ Original training data
 - ▷ Evaluation data
- Fundamental source: systemic bias

What can we do? Promote inclusivity, create more balanced datasets, and make algorithms robust to imbalanced data

Thank you!