

CLIP

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford, Jong Wook Kim, et al. January 2021

What makes CLIP special?

Motivation:

Instead of using a fixed set of labels, Get supervision from natural language

Result:

Robust zero-shot inference Multimodal embedding space

How does it work?

• • • • • •Pig Tiger Panda Hippo Camel

CLIP: Contrastive Language-Image Pre-training

Zero-shot image classification

Why contrastive

Some CLIP details

Training

- Trained on 400M image-text pairs from the internet
- Batch size of 32,768
- 32 epochs over the dataset
- Cosine learning rate decay

Architecture

- ResNet-based or ViT-based image encoder
- Transformer-based text encoder

Representation Learning

Linear probe

Logistic regression classifier on image features

- L-BFGS
- Only one hyperparameter
- Allows "fair" comparisons with other vision models
- Provides lower bound for fine-tuned models

Evaluated on 27 datasets × 65 vision models

Linear probe performance vs SOTA vision models

Linear-probe CLIP vs Linear-probe EfficientNet-L2

vs ImageNet score

Zero-Shot Transfer

Prompt engineering

Zero-shot vs Linear-probe ResNet-50

Zero-shot CLIP outperforms ResNet-50 on 16 of 27 datasets

Zero-shot CLIP vs Few-shot linear probes

Zero-shot CLIP is as good as

- 4-shot linear-probe CLIP
- 16-shot BiT-M

Zero-shot vs Linear-probe CLIP

Zero-shot performance vs model size

Robustness to Natural Distribution Shift

Robustness to natural distribution shift

CLIP is significantly more robust!

7 ImageNet-like Datasets (Taori et al.)

- ImageNetV2
- ImageNet-A
- ImageNet-R
- ImageNet Sketch
- ObjectNet
- ImageNet Vid
- Youtube-BB

Adapting to ImageNet does not help robustness

Robustness of few-shot linear probes

Limitations and Broader Impacts

Limitations of CLIP

- Zero-shot performance is well below the SOTA
- Especially weak on abstract tasks such as counting
- Poor on out-of-distribution data such as MNIST
- Susceptible to adversarial attacks
- Dataset selection bias
- Social biases

Quantifying the (un)safety of CLIP models

CLIP has societal biases

- Race
- Gender
- Age

Surveillance usage

- Zero-shot scene classification
- Zero-shot identification of celebrities

Not comprehensive, will continue research to ensure safety Model card limits usage of CLIP to research-only

Related Work

Multimodal learning

- VirTex
- ICMLM
- ConVIRT

Natural language supervision Text-image retrieval Webly supervised learning

Try CLIP today!

https://github.com/openai/CLIP

- PyTorch implementation
- Colab notebook

Thank You

Visit openai.com for more information.