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What makes CLIP special?

Motivation:

Instead of using a fixed set of labels,
Get supervision from natural language
Result:

Robust zero-shot inference
Multimodal embedding space
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How does it work?
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CLIP: Contrastive Language-Image Pre-training
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Zero-shot image classification
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Why contrastive

Zero-shot ImageNet accuracy Bag of Words

40% e Contrastive

Bag of Words
Prediction

4x efficiency 3x efficiency Transformer

‘ Language Model
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Some CLIP details

Training
- Trained on 400M image-text pairs from the internet
- Batch size of 32,768
- 32 epochs over the dataset
- Cosine learning rate decay

Architecture
- ResNet-based or ViT-based image encoder
- Transformer-based text encoder






Linear probe

Logistic regression classifier on image features

L-BFGS

Only one hyperparameter

Allows “fair” comparisons with other vision models
Provides lower bound for fine-tuned models

Evaluated on 27 datasets x 65 vision models



Linear probe performance vs SOTA vision models

Linear probe average over all 27 datasets
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Linear-probe CLIP vs Linear-probe EfficientNet-L2
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vs ImageNet score
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Linear probe average over 26 datasets
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Prompt engineering

RN50x64

5 point
improvement

¢ 4X efficiency ain
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Zero-shot vs Linear-probe ResNet-50

Zero-shot CLIP outperforms ResNet-50 on 16 of 27 datasets
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Zero-shot CLIP vs Few-shot linear probes

Zero-shot CLIP is as good as

Linear Probe CLIP

- 4-shot linear-probe CLIP RSN BIT-M (ImageNet-21K)
- 16-shot BiT-M

(o))
o

9,1
u

ResNet50

U
o

o
=
(O]
ful
(]
O
%2]
(]
(@)}
©
o
]
>
<

o
ul

o
o

w
U

w
o

01 2 4 8
# of labeled training examples per class




Zero-shot vs Linear-probe CLIP
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Zero-shot performance vs model size
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Robustness to natural distribution shift

CLIP is significantly more robust! == deatbust model ( <

Zero-Shot CLIP
¢ Standard ImageNet training
Exisiting robustness techniques

7 ImageNet-like Datasets (Taori et al.)
- ImageNetV?2
- ImageNet-A
- ImageNet-R
- ImageNet Sketch
- ObjectNet
- ImageNet Vid
- Youtube-BB
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Adapting to ImageNet does not help robustness
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Robustness of few-shot linear probes
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Limitations of CLIP

Zero-shot performance is well below the SOTA

Especially weak on abstract tasks such as counting
- Poor on out-of-distribution data such as MNIST

- Susceptible to adversarial attacks

- Dataset selection bias

- Social biases



Quantifying the (un)safety of CLIP models

CLIP has societal biases
- Race

- Gender

- Age

Surveillance usage
- Zero-shot scene classification
- Zero-shot identification of celebrities

Not comprehensive, will continue research to ensure safety
Model card limits usage of CLIP to research-only



Related Work

Multimodal learning
- VirTex
- ICMLM
- ConVIRT

Natural language supervision
Text-image retrieval
Webly supervised learning
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CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety
of (image, text) pairs. It can be instructed in natural language to predict the most relevant
text snippet, given an image, without directly optimizing for the task, similarly to the zero-
shot capabilities of GPT-2 and 3. We found CLIP matches the performance of the original
ResNet50 on ImageNet “zero-shot” without using any of the original 1.28M labeled
examples, overcoming several major challenges in computer vision.



https://github.com/openai/CLIP
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