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Why is Uncertainty important in practice?

• Machine Learning (ML) systems are being deployed to many applications →
• Image Classification, Speech Recognition, Machine Translation, etc...

• In some applications, the cost of a mistake is high or consequence fatal →
• Medical applications, Financial applications and Autonomous vehicles

• Obtaining measures of uncertainty in predictions helps avoid mistakes!
• Increases safety and reliability of ML system
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Scenario

• Given a deployed model and a test input x* we wish to:
• Obtain a prediction
• Obtain a measure of uncertainty in prediction

• Take action based estimate of uncertainty
• Reject prediction / stop decoding sentence
• Ask for human intervention
• Use active learning

• Appropriate action depends on source of uncertainty
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Sources of Uncertainty

(a) Data Uncertainty (b) Data Sparsity (c) Out-of-Distribution inputs

• Knowledge (epistemic) uncertainty refers to both:
• Data Sparsity and Out-of-distribution inputs
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Data (Aleatoric) Uncertainty
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Data Uncertainty
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Data Uncertainty
• Distinct Classes

• Overlapping Classes
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Data Uncertainty

• In regression tasks data uncertainty takes the form of additive noise

(a) Homoscedastic Noise (b) Heteroscedastic Noise
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Data Uncertainty

• Data Uncertainty is the entropy of the true data distribution →

ℋ[Ptr(y |x*)] = −
K∑︁

c=1
Ptr(y = 𝜔c |x*) ln Ptr(y = 𝜔c |x*)

• Captured by the entropy of a model’s posterior over classes →

ℋ[P(y |x*, 𝜃)] = −
K∑︁

c=1
P(y = 𝜔c |x*, 𝜃) ln P(y = 𝜔c |x*, 𝜃)
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Reminder - Entropy

(a) Low Entropy (b) High Entropy
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Data Uncertainty in Regression

• Data Uncertainty is the differential entropy of the true data distribution →

ℋ[ptr(y |x*)] = −
∫︁

ptr(y |x*) ln ptr(y |x*)dy

• Captured by the entropy of a model’s posterior over classes →

ℋ[p(y |x*, 𝜃)] = −
∫︁

p(y |x*, 𝜃) ln p(y |x*, 𝜃)dy

• Data Uncertainty is captured via Maximum Likelihood Estimation
• Given sufficient training data, model flexibility and correct output distribution
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Sources of Uncertainty

(a) Data Uncertainty (b) Data Sparsity (c) Out-of-Distribution inputs
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Knowledge Uncertainty - Out-of-Distribution

• Unseen classes

• Unseen variations of seen classes
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Sources of Uncertainty

• Data Uncertainty → Known-Unknown
• Class overlap (complexity of decision boundaries)
• Homoscedastic and Heteroscedastic noise

• Knowledge Uncertainty → Unknown-Unknown
• Test input in out-of-distribution region far from training data

• Appropriate action depends on source of uncertainty
• Separating sources of uncertainty requires Ensemble approaches
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Ensemble Approaches
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Ensemble Approaches

• Uncertainty in 𝜃 captured by model posterior p(𝜃|𝒟) →

p(𝜃|𝒟) = p(𝒟|𝜃)p(𝜃)
p(𝒟)

• Can consider an ensemble of probabilistic models →

{P(y |x, 𝜃(m))}Mm=1, 𝜃(m) ∼ p(𝜃|𝒟), {p(y |x, 𝜃(m))}Mm=1, 𝜃(m) ∼ p(𝜃|𝒟)
p(y |x, 𝜃) = 𝒩 (y |𝜇, Λ), {𝜇, Λ} = f (x; 𝜃)

• Bayesian inference of P(y |x*, 𝜃) →

P(y |x,𝒟) = Ep(𝜃|𝒟)
[︀
P(y |x, 𝜃)

]︀
≈ 1

M

M∑︁
m=1

P(y |x*, 𝜃(m)), 𝜃(m) ∼ p(𝜃|𝒟)

• P(y |x*,𝒟) Is the predictive posterior or ensemble mean
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Ensemble for certain in-domain input
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Ensemble for Out-of-Domain input
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Ensemble for Out-of-Domain input

26/63



Sources of Uncertainty

• Decompose sources of uncertainty via Mutual Information for classification:

ℐ[y , 𝜃|x*,𝒟]⏟  ⏞  
Knowledge Uncertainty

= ℋ
[︀
P(y |x*,𝒟)

]︀⏟  ⏞  
Total Uncertainty

−Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
⏟  ⏞  

Data Uncertainty

• Mutual Information is a measure of ensemble diversity
• Intractable for regression, so use Law of Total Variation:

Vp(𝜃|𝒟)[𝜇]⏟  ⏞  
Knowledge Uncertainty

= Vp(y |x ,𝒟)[y ]⏟  ⏞  
Total Uncertainty

− Ep(𝜃|𝒟)[Λ
−1]⏟  ⏞  

Data Uncertainty
(1)
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Distributions on a Simplex

• Ensemble {P(y |x*, 𝜃(m))}Mm=1 can be visualized on a simplex

(a) Confident (b) Data Uncertainty (c) Knowledge Uncertainty

• Same as sampling from implicit Distribution over output Distributions

P(y |x*, 𝜃(m)) ∼ p(𝜃|𝒟) ≡ 𝜋(m) ∼ p(𝜋|x*,𝒟)
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Distributions on a Simplex (cont)

• Expanding out 𝜋(m) =

⎡⎢⎢⎢⎢⎣
P(y = 𝜔1)
P(y = 𝜔2)

...
P(y = 𝜔K )

⎤⎥⎥⎥⎥⎦, where each 𝜋(m) is a point on a simplex.
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Distribution over Distributions

(a) {𝜋(m)}M
m=1 (b) p(𝜋|x*, 𝒟)
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Distribution over Distributions

(a) {𝜋(m)}M
m=1 (b) p(𝜋|x*, 𝒟)
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Distribution over Distributions - Regression

(c) {𝜇(m), Λ(m)}M
m=1 (d) p(𝜇, Λ|x*, 𝒟)
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Prior Networks [1, 2]

• Explicitly model p(𝜋|x*,𝒟) and p(𝜇, Λ|x*,𝒟) using a Prior Network

p(𝜋|x*; 𝜃) ≈ p(𝜋|x*,𝒟)
p(𝜇, Λ|x*, 𝜃) ≈ p(𝜇, Λ|x*,𝒟)

• Predictive posterior distribution is given by expected categorical

P(y |x*; 𝜃) = E
p(𝜋|x*;𝜃)

[︀
p(y |𝜋)

]︀
= �̂�

p(y |x*; 𝜃) = E
p(𝜇,Λ|x*;𝜃)

[︀
p(y |𝜇, Λ)

]︀
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Prior Networks

• A Classification Prior Network parametrizes the Dirichlet Distribution

p(𝜋|x*; 𝜃) = Dir(𝜋|𝛼), 𝛼 = f (x*; 𝜃)

• A Regression Prior Network parameterizes the Normal-Wishart Distribution

p(𝜇, Λ|x*, 𝜃) = 𝒩𝒲(𝜇, Λ|m, L, 𝜅, 𝜈), {m, L, 𝜅, 𝜈} = Ω = f (x*; 𝜃)

• Dirichlet and Normal-Wishart Distributions →
• Conjugate priors to Categorical and Normal distributions, respectively.
• Convenient properties → analytically tractable!
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Prior Networks

• Construct p(𝜋|x*, 𝜃) to emulate classification ensemble

(a) Low Uncertainty (b) Data Uncertainty (c) Knowledge Uncertainty
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Prior Networks vs Ensembles

• Construct p(𝜇, Λ|x*, 𝜃) to emulate regression ensemble

(a) Low uncertainty (b) Data uncertainty (c) Knowledge Uncertainty
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Prior Networks

• Behaviour of Ensemble distribution over distributions
• Controlled via prior p(𝜃) and inference scheme

• Behaviour of Prior Networks distribution over distributions
• Controlled via loss function and training data 𝒟
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Uncertainty Measures for Prior Networks

• Ensemble uncertainty decomposition:

ℐ[y , 𝜃|x*,𝒟]⏟  ⏞  
Knowledge Uncertainty

= ℋ[Ep(𝜃|𝒟)[P(y |x*, 𝜃)]]⏟  ⏞  
Total Uncertainty

−Ep(𝜃|𝒟)[ℋ[P(y |x*, 𝜃)]]⏟  ⏞  
Data Uncertainty

• Prior Network uncertainty decomposition

ℐ[y , 𝜋|x*; 𝜃]⏟  ⏞  
Knowledge Uncertainty

= ℋ
[︀
E

p(𝜋|x*;𝜃)
[P(y |𝜋)]

]︀
⏟  ⏞  

Total Uncertainty

−E
p(𝜋|x*;𝜃)

[︀
ℋ[P(y |𝜋)]

]︀
⏟  ⏞  

Data Uncertainty
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Uncertainty Measures for Prior Networks

• Ensemble uncertainty decomposition (intractable!):

ℐ[y , 𝜃|x*,𝒟]⏟  ⏞  
Knowledge Uncertainty

= ℋ[Ep(𝜃|𝒟)[p(y |x*, 𝜃)]]⏟  ⏞  
Total Uncertainty

−Ep(𝜃|𝒟)[ℋ[p(y |x*, 𝜃)]]⏟  ⏞  
Data Uncertainty

• Prior Network uncertainty decomposition (can be tractable!)

ℐ[y , {𝜇, Λ}|x*,𝒟]⏟  ⏞  
Knowledge Uncertainty

= ℋ
[︀
Ep(𝜇,Λ|x*,𝜃)[p(y |𝜇, Λ)]

]︀
⏟  ⏞  

Total Uncertainty

−Ep(𝜇,Λ|x*,𝜃)
[︀
ℋ[p(y |𝜇, Λ)]

]︀
⏟  ⏞  

Data Uncertainty
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Prior Network Training

ℒ(𝜃,𝒟) = ℒin(𝜃,𝒟trn)⏟  ⏞  
In Domain Loss

+ 𝛾 · ℒout(𝜃,𝒟out)⏟  ⏞  
OOD Loss

(a) In-Domain Target (b) OOD Target
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Reverse KL-Divergence Loss and the ELBO

• How to train Distribution over Distributions using only {y (i), x(i)}Ni=1?
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Reverse KL-Divergence Loss and the ELBO [3, 2]

• Consider using Bayes’ rule as follows:

p(𝜋|�̂�(i)) ∝ p(y (i)|𝜋)𝛽p(𝜋|𝛼0), p(𝜇, Λ|Ω̂(i)) ∝ p(y (i)|𝜇, Λ)𝛽p(𝜇, Λ|Ω0)

• Minimizing Reverse KL-Divergence induces an ELBO-like loss:

KL[p(𝜋|x, 𝜃)‖p(𝜋|�̂�(i))] = 𝛽 · Ep(𝜋|x ,𝜃)
[︀
− ln p(y |𝜋)

]︀
⏟  ⏞  

Reconstruction term

+ KL[p(𝜋|x, 𝜃)‖p(𝜋|𝛼0)]⏟  ⏞  
Prior

+Z

KL[p(𝜇, Λ|x, 𝜃)‖p(𝜇, Λ|Ω̂(i))] =
= 𝛽 · Ep(𝜇,Λ|x ,𝜃)

[︀
− ln p(y |𝜇, Λ)

]︀
+ KL[p(𝜇, Λ|x, 𝜃)‖p(𝜇, Λ|Ω0)] + Z

• Set b̂eta >> 0 in-domain and b̂eta = 0 out-of-domain.
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Reverse KL-Divergence Loss and the ELBO

• Prior parameters 𝛼0 and Ω0 = {m0, L0, 𝜅0, 𝜈0} defined as follows:

𝛼0 = 1

m0 =
N∑︁

i=1

y (i)

N , L−1
0 = 𝜈0

N

N∑︁
i=1

(y (i) −m0)(y (i) −m0)T, 𝜅0 = 𝜖, 𝜈0 = K + 1 + 𝜖

• Prior for classification - uninformative flat Dirichlet Prior
• Prior for regression - semi-informative Prior (uninformative would be improper)
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Reverse KL-Divergence Loss and the ELBO

• But how to obtain out-of-domain training data 𝒟OOD = p̂out(x)?
• Use a different dataset, eg: CIFAR10 vs CIFAR100
• Synthesize using generative model (VAE/GAN)
• Generate using adversarial attacks

• Choice is highly non-trivial for many tasks (Depth Estimation) → main downside!
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Reverse KL-Divergence Loss and the ELBO

• Out-of-domain (OOD) training data must be on boundary on in-domain region →
• Too loose → Some OOD might be considered in-domain
• Too tight → Some in-domain might be considered OOD

(a) Too Loose (b) Too Tight (c) Good
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Prior Networks trained with RKL loss on Artificial Data

(a) Total Uncertainty (b) Data Uncertainty (c) Knowledge Uncertainty
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Ensemble Distribution Distillation [4, 2]

• Ensembles of multiple independently trained models {p(y |x, 𝜃(m))}Mm=1
• Improved performance
• Robust uncertainty estimates derived from mean and diversity
• Computationally expensive!

• Ensemble Distillation (EnD) → distill ensemble mean into a single model
• Improved performance and low computational cost
• Lose information about diversity → cannot separate data and knowledge uncertainty

• Ensemble Distribution Distillation (EnD2) →
• Distill mean and diversity of ensemble into single model
• Improved performance and robust uncertainty at low computational cost
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Ensemble Distribution Distillation (EnD2) for Classification

1
M

∑︀M
m=1 P(y |x, 𝜃(m)) ←−

{︀
P(y |x, 𝜃(m))

}︀M
m=1 −→ p(𝜋|x; 𝜑)

(a) EnD (b) Ensemble (c) EnD2

• Distill ensemble distribution (mean and diversity) into a single model
• Fully capture all information about the ensemble
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Ensemble Distribution Distillation (EnD2) for Classification [4]

• Parameterize a Dirichlet distribution using neural network:

p(𝜋|x; 𝜑) = Dir(𝜋; 𝛼), 𝛼 = f (x; 𝜑), 𝛼c > 0

• Training data are ensemble predictions for every input:

𝒟 =
{︁{︁

p(y |x(i); 𝜃(m)), x(i)
}︁M

m=1

}︁N

i=1
∼ p̂(𝜋, x)

• Train via Maximum Likelihood:

ℒ(𝜑,𝒟) = − Ep̂(x)
[︁
Ep̂(𝜋|x)[ln p(𝜋|x; 𝜑)]

]︁
• Predict using mean, derive uncertainty from mean and diversity
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Classification results (% Error and % ROC-AUC)

Method CIFAR-10 CIFAR-100 TinyImageNet

Single 8.0 30.4 41.8
Ensemble 6.2 26.3 36.6
EnD 6.7 28.2 38.5
EnD2 6.9 28.0 37.3

Model CIFAR100 vs. LSUN CIFAR100 vs. TinyImageNet

Total Unc. Knowledge Unc. Total Unc. Knowledge Unc.

Ensemble 82.4 88.4 76.6 81.7
EnD 76.5 - 70.0 -
EnD2 83.5 86.9 76.4 79.3
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Ensemble Distribution Distillation (EnD2) for Regression [2]

1
M

∑︀M
m=1 p(y |x, 𝜃(m)) ←−

{︀
p(y |x, 𝜃(m))

}︀M
m=1 −→ p(𝜇, Λ|x; 𝜑)

(a) EnD (b) Ensemble (c) EnD2

• Distill ensemble distribution (mean and diversity) into a single model
• Fully capture all information about the ensemble

54/63



Ensemble Distribution Distillation (EnD2) for Regression

• Construct a Regression Prior Network

y ∼ 𝒩 (𝜇, Λ), 𝒩𝒲(𝜇, Λ|m, L, 𝜅, 𝜈); {m, L, 𝜅, 𝜈} = f (x; 𝜑)

• Training data are ensemble predictions for every input:

𝒟 =
{︁{︁

p(y |x(i); 𝜃(m)), x(i)
}︁M

m=1

}︁N

i=1
=

{︁{︀
𝜇(m,i), Λ(m,i)}︀M

m=1, x(i)
}︁N

i=1
∼ p̂(𝜇, Λ, x)

• Train via Maximum Likelihood:

ℒ(𝜑,𝒟) = − Ep̂(x)
[︁
Ep̂(𝜇,Λ|x)[ln p(𝜇, Λ|x; 𝜑)]

]︁
• Predict using mean, derive uncertainty from mean and diversity
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Monocular Depth Estimation - Predictive Performance

Method NYUv2 KITTI

rel(↓) rmse(↓) NLL(↓) rel(↓) rmse(↓) NLL(↓)

ENSM 5 0.117 0.438 0.76 0.073 3.355 1.94
EnD2 0.120 0.451 -1.47 0.075 3.367 1.42
MD-EnD 0.121 0.451 8.48 0.079 3.446 2.30
DER 0.125 0.464 -1.04 0.078 3.552 1.71
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Monocular Depth Estimation - OOD Detection (ROC-AUC)

Method OOD NYUv2 vs LSUN KITTI vs LSUN

Total Unc. Knowledge Unc. Total Unc. Knowledge Unc.

ENSM 72.3 74.5 03.2 82.2
EnD2 (Our) LSN-B 73.3 81.7 1.7 88.7
MD-EnD 63.0 50.2 0.4 44.8

ENSM 88.7 88.6 03.6 77.9
EnD2 (Our) LSN-C 89.3 96.4 2.0 83.4
DER 87.7 87.8 03.5 04.
MD-EnD 69.8 42.2 01.2 50.6
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Open questions

• EnD2 - still a single model → evaluate robustness
• Are Dirichlet and Normal-Wishart appropriate?

• Do we need to model ensemble in model detail?
• Do we need to only capture bulk properties?

• Do we need auxiliary training data? Mixup?
• Can we use EnD2 for analysis?
• Can we combine ensemble generation and EnD2?
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Thank you! Questions?
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