HOPFIELD NETWORKS IS ALL YOU NEED

Deep Learning: Classics and Trends

Johannes Brandstetter Amsterdam Machine Learning Lab Institute for Machine Learning Linz

HOPFIELD NETWORKS IS ALL YOU NEED

Hubert Ramsauer* Bernhard Schäfl* Johannes Lehner* Philipp Seidl* Michael Widrich* Thomas Adler* Lukas Gruber* Markus Holzleitner* Milena Pavlović^{‡,§} Geir Kjetil Sandve[§] Victor Greiff[‡] David Kreil[†] Michael Kopp[†] Günter Klambauer* Johannes Brandstetter* Sepp Hochreiter*,[†] *ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria [†] Institute of Advanced Research in Artificial Intelligence (IARAI) [‡] Department of Immunology, University of Oslo, Norway [§] Department of Informatics, University of Oslo, Norway

ACCEPTED AT ICLR conference 2021

Overview

How to equip Deep Learning architectures with memories:

- Motivation for continuous modern Hopfield Networks
- Properties of continuous modern Hopfield Networks
- Relation to Transformers
- New layers for Deep Learning architectures
 - New Hopfield layers
- New Hopfield layers at work

Deep Learning with Memories

- The goal is to integrate associative memories into Deep Learning architectures.
- Deep Learning that goes beyond convolutional and recurrent networks.

Deep Learning with Associative Memories

- Association of sets
- Pattern search in sets
- Pooling operations
- Memories (LSTM, GRU)
- Learning prototypes

- Transformer attention
- Sequence-to-sequence
- Point sets
- Multiple instance learning
- k-nearest neighbor of set

Modern Hopfield Networks as tool to equip Deep Learning architectures with memory.

- Hopfield Networks (Hopfield 1982)
- N binary patterns $\{x_1, \ldots, x_N\}$ with $x_i \in \{-1, 1\}^d$

Weight matrix \boldsymbol{W} stores the N binary patterns: $\boldsymbol{W} = \sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}$

- State (query) pattern $\boldsymbol{\xi} \in \{-1, 1\}^d$.
- Update rule \u03c6^{new} = sgn (W\u03c6 b) with threshold b minimizes the energy function:

$$E = -\frac{1}{2} \boldsymbol{\xi}^T \boldsymbol{W} \boldsymbol{\xi} + \boldsymbol{\xi}^T \boldsymbol{b} = -\frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{\xi}^T \boldsymbol{x}_i)^2 + \boldsymbol{\xi}^T \boldsymbol{b}$$
(1)

Convergence is reached if $\xi^{\text{new}} = \xi$.

Weight matrix $oldsymbol{W} = \sum_{i}^{1} oldsymbol{x}_{i} oldsymbol{x}_{i}^{T}$ to store pattern

Update rule $\boldsymbol{\xi}^{\mathsf{new}} = \operatorname{sgn} (\boldsymbol{W}\boldsymbol{\xi} - \boldsymbol{b})$ to retrieve pattern

Undesired retrieval

masked test image

retrieved

Spurious minima: patterns are correlated

Modern Hopfield Networks

Krotov & Hopfield (2016)

• $E = \sum_{i}^{N} F(\boldsymbol{\xi}^{T} \boldsymbol{x}_{i})$, where $F(z) = z^{a}$ is the interaction function.

For a = 2, we obtain the classical Hopfield Networks: $E = \frac{1}{2} \sum_{i}^{N} (\boldsymbol{\xi}^{T} \boldsymbol{x}_{i})^{2}$

Storage capacity is polynomial in d:

□ Storage means that patterns are fixed points of the update rule.

Modern Hopfield Networks

Demircigil et al. (2017)

•
$$E = \sum_{i}^{N} F(\boldsymbol{\xi}^{T} \boldsymbol{x}_{i})$$
, where $F(z) = \exp(z)$ is the interaction function.

- Storage capacity is exponential in d.
- **Convergence** / retrieval after one update.

Modern Hopfield Networks

Ŵ

New Energy Function

- Modern Hopfield Networks are binary.
- We want to extend them towards Continuous Hopfield Networks:
 - Differentiability for gradient descent in Deep Networks.
 - Retrieval with one update to activate the layer.
 - High storage capacity for complex systems.

New Energy Function / New Update Rule

$$E = -\mathbf{lse}(\beta, \mathbf{X}^{T} \boldsymbol{\xi}) + \frac{1}{2} \boldsymbol{\xi}^{T} \boldsymbol{\xi} + \beta^{-1} \log N + \frac{1}{2} M^{2}$$

- N stored (key) patterns $x_i \in \mathbb{R}^d$ are from a *d*-dimensional space
- Pattern matrix $\boldsymbol{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_N)$
- Largest pattern $M = \max_i ||\boldsymbol{x}_i||$
- **State (query) pattern** ξ

Ise
$$(\beta, \boldsymbol{a}) = \beta^{-1} \log \left(\sum_{i=1}^{N} \exp(\beta a_i) \right)$$

$$\boldsymbol{\xi}^{\mathsf{new}} = f(\boldsymbol{\xi}) = \boldsymbol{X} \mathsf{softmax}(\beta \boldsymbol{X}^T \boldsymbol{\xi})$$

Properties of New Energy Function

- The new energy function generalizes the energy of binary modern Hopfield Networks (Demircigil et al. 2017) to continuous valued patterns.
- Important properties are kept:
 - **Exponential storage capacity** (Theorem 3 in the paper)
 - Retrieval after one update (Theorem 4 in the paper)
- Additionally, global convergence to a local minimum proven (Theorem 2 in the paper).

Convergence to Stationary Points

Theorem of Convergence to Stationary Point.

For the iteration with the update rule we have $E\left(\boldsymbol{\xi}^{t}\right) \rightarrow E\left(\boldsymbol{\xi}^{*}\right) = E^{*}$ as $t \rightarrow \infty$, for some stationary point $\boldsymbol{\xi}^{*}$. Furthermore, $\left\|\boldsymbol{\xi}^{t+1} - \boldsymbol{\xi}^{t}\right\| \rightarrow 0$ and either $\{\boldsymbol{\xi}^{t}\}_{t=0}^{\infty}$ converges or, in the other case, the set of limit points of $\{\boldsymbol{\xi}^{t}\}_{t=0}^{\infty}$ is a connected and compact subset of $\mathcal{L}(E^{*})$, where $\mathcal{L}(a) = \{\boldsymbol{\xi} \in \mathcal{L} \mid E(\boldsymbol{\xi}) = a\}$ and \mathcal{L} is the set of stationary points of the iteration. If $\mathcal{L}(E^{*})$ is finite, then any sequence $\{\boldsymbol{\xi}^{t}\}_{t=0}^{\infty}$ generated by the iteration converges to some $\boldsymbol{\xi}^{*} \in \mathcal{L}(E^{*})$.

All limit points of any sequence generated by the iteration $\xi^{\text{new}} = f(\xi) = X \operatorname{softmax}(\beta X^T \xi)$ are stationary points (local minima or saddle points) of the energy function *E*.

Exponential storage capacity

First we have to define, storing/retrieving patterns with a modern Hopfield Network:

Definition of Retrieved and Stored Patterns.

We assume that around every pattern x_i a sphere S_i is given. We say x_i is stored if there is a single fixed point $x_i^* \in S_i$ to which all points $\boldsymbol{\xi} \in S_i$ converge, and $S_i \cap S_j = \emptyset$ for $i \neq j$. We say x_i is retrieved for a given ϵ if iteration (update rule) gives a point \tilde{x}_i that is at least ϵ -close to the single fixed point $x_i^* \in S_i$. The retrieval error is $\|\tilde{x}_i - x_i\|$.

Exponential storage capacity

Theorem of Exponential Storage Capacity.

We assume a failure probability $0 and randomly chosen patterns on the sphere with radius <math>M := K\sqrt{d-1}$. We define $a := \frac{2}{d-1}(1 + \ln(2\beta K^2 p(d-1)))$, $b := \frac{2K^2\beta}{5}$, and $c := \frac{b}{W_0(\exp(a+\ln(b))}$, where W_0 is the upper branch of the Lambert W function, and ensure $c \ge \left(\frac{2}{\sqrt{p}}\right)^{\frac{d}{d-1}}$. Then with probability 1 - p, the number of random patterns that can be stored is

$$N \geq \sqrt{p} c^{\frac{d-1}{4}} .$$

Therefore it is proven for $c \ge 3.1546$ with $\beta = 1$, K = 3, d = 20 and p = 0.001 ($a + \ln(b) > 1.27$) and proven for $c \ge 1.3718$ with $\beta = 1$, K = 1, d = 75, and p = 0.001 ($a + \ln(b) < -0.94$).

Exponential storage capacity in the dimension d of the patterns $(x_i \in \mathbb{R}^d)$

Retrieval with one update

The update rule retrieves patterns with one update for well separated patterns, that is, patterns with large Δ_i:

Theorem of Retrieval with One Update.

With query ξ , after one update the distance of the new point $f(\xi)$ to the fixed point x_i^* is exponentially small in the separation Δ_i . The precise bounds using the Jacobian $J = \frac{\partial f(\xi)}{\partial \xi}$ and its value J^m in the mean value theorem are:

$$\begin{split} \|f(\boldsymbol{\xi}) &- \boldsymbol{x}_{i}^{*}\| \leq \|\mathbf{J}^{m}\|_{2} \|\boldsymbol{\xi} - \boldsymbol{x}_{i}^{*}\|, \\ \|\mathbf{J}^{m}\|_{2} &\leq 2 \beta N M^{2} (N-1) \\ &\exp(-\beta (\Delta_{i} - 2 \max\{\|\boldsymbol{\xi} - \boldsymbol{x}_{i}\|, \|\boldsymbol{x}_{i}^{*} - \boldsymbol{x}_{i}\|\} M)). \end{split}$$

For given ϵ and sufficient large Δ_i , we have $\|f(\boldsymbol{\xi}) - \boldsymbol{x}_i^*\| < \epsilon$, that is, retrieval with one update.

$$\Delta_i := \min_{j, j
eq i} \left(oldsymbol{x}_i^T oldsymbol{x}_i \ - \ oldsymbol{x}_i^T oldsymbol{x}_j
ight) \ = \ oldsymbol{x}_i^T oldsymbol{x}_i \ - \ \max_{j, j
eq i} oldsymbol{x}_i^T oldsymbol{x}_j$$

The retrieval error decreases exponentially with the separation Δ_i (Theorem 5 in the paper).

Global Fixed Point and Metastable States

If no pattern x_i ∈ ℝ^d is well separated, then the iterate converges to a global fixed point close to the arithmetic mean of the vectors (softmax is close to uniform).

Metastable states:

- Some vectors are similar to each other,
- but well separated from other vectors.
- □ Fixed point near the similar patterns (metastable state).
- Iterates that start near the metastable state converge to it.

New Modern Hopfield Networks

New Modern Hopfield Networks

New Modern Hopfield Networks

New Update Rule = Transformer Attention

Hopfield update:

 $oldsymbol{\xi}^{\mathsf{new}} = f(oldsymbol{\xi}) = oldsymbol{X} \mathsf{softmax}(eta oldsymbol{X}^T oldsymbol{\xi})$

Transformer attention: softmax $(1/\sqrt{d_k} Q K^T) V$

$$\begin{split} \boldsymbol{y}_i \in \mathbb{R}^{d_y} \\ \boldsymbol{x}_i &= \boldsymbol{W}_K^T \boldsymbol{y}_i \in \mathbb{R}^{d_k}, \, \boldsymbol{W}_K \in \mathbb{R}^{d_y \times d_k} \\ \boldsymbol{\xi}_i &= \boldsymbol{Q}_K^T \boldsymbol{y}_i \in \mathbb{R}^{d_k}, \, \boldsymbol{W}_Q \in \mathbb{R}^{d_y \times d_k} \\ \boldsymbol{Y} &= (\boldsymbol{y}_1, \dots, \boldsymbol{y}_N)^T \in \mathbb{R}^{N \times d_y} \\ \boldsymbol{X}^T &= \boldsymbol{K} = \boldsymbol{Y} \boldsymbol{W}_K \in \mathbb{R}^{N \times d_k} \\ \boldsymbol{\Xi}^T &= \boldsymbol{Q} = \boldsymbol{Y} \boldsymbol{W}_Q \in \mathbb{R}^{N \times d_k} \\ \boldsymbol{V} &= \boldsymbol{Y} \boldsymbol{W}_K \boldsymbol{W}_V = \boldsymbol{X}^T \boldsymbol{W}_V \in \mathbb{R}^{N \times d_v} \\ \boldsymbol{W}_V \in \mathbb{R}^{d_k \times d_v} \\ \boldsymbol{\beta} &= \frac{1}{\sqrt{d_k}} \end{split}$$

 $\begin{aligned} & \text{softmax} \in \mathbb{R}^N \text{ is a row vector} \\ & \boldsymbol{y}_i \in \mathbb{R}^d \text{ is a data vector} \\ & \boldsymbol{x}_i \in \mathbb{R}^d \text{ is stored (key) pattern} \\ & \boldsymbol{\xi}_i \in \mathbb{R}^d \text{ is state (query) pattern} \end{aligned}$

Deep Learning with Memories

- The goal is to integrate associative memories into Deep Learning architectures.
- With Modern continuous Hopfield Networks we now have a tool to do that.

Deep Learning with Memories

- The goal is to integrate associative memories into Deep Learning architectures.
- With Modern continuous Hopfield Networs we now have a tool to do that.

New Hopfield Layers

Hopfield:

Propagate *R* and *Y* Transformer attention

HopfieldPooling:

Propagate *Y* Multiple instances Sequences (LSTMs)

HopfieldLayer:

Propagate *R* SVM, *k*-NN

Layer Hopfield

- Association of raw state (query) patterns R and raw stored (key) patterns Y
- Association of two sets R and Y
- This layer works for:
 - Transformer attention (associates keys and queries)
 - Sequence-to-sequence learning
 - Point set operations
 - Retrieval-based methods

Layer Hopfield Pooling

- Queries Q and raw stored (key) patterns Y
- Result is mapped by W_V .
- Fixed pattern search of Q in Y:
 - \Box **Pooling** of *Y* guided by *Q*.
 - Memories of sequence or set Y
- This layer can potentially substitute:
 - Pooling
 - LSTMs / GRUs applied to Y
 - □ Multiple instance learning, patterns search
 - 2-D position encoding: convolutions

Layer HopfieldLayer

Raw state (query) patterns R and stored patterns W_K

- This layer can potentially substitute:
 - \Box k-nearest neighbor if W_K are training data
 - **SVM** if prototypes W_K are support vectors
 - Similarity-based if W_K are training data
 - \Box Learning vector quantization (LVQ) if W_K are the cluster centers

Additional Functionalities

- Multiple updates to control how precise fixed points are found.
- Variable β: kind of fixed point / size of metastable states:
 - $\Box \ \beta \text{ controls over how many}$ patterns is averaged.
 - Relevant in combination with the learning rate to steer learning.

Controlling the storage capacity

via the associative dimension.

Pattern normalization by layernorm (controls fixed point dynamics).

Experiments

We have already successfully applied Hopfield layers to a wide range of tasks:

- □ Natural Language Processing
- Multiple instance learning problems (MIL)
- □ Small classification tasks (UCI)
- Drug design problems

Experiments NLP

Minimal number k required to sum up the softmax values to 0.90: k indicates the **size of a metastable** state.

- Very large metastable state or global fixed point (layer 1)
- Large metastable state (layers 3, 4, 5)
 - Medium metastable state (layers 10, 11, 12). Information collected that is required for the task.
- Small metastable state or fixed point close to a single patters (layers 6, 7, and 8)

Experiments: MIL

Multiple Instance Learning (MIL):

- Memory of new modern Hopfield Network is promising for MIL.
- HopfieldPooling as Hopfield layer in Deep Learning architectures.

Datasets:

- 1. Immune Repertoire Classification
- 2. MIL benchmark datasets

Immune Repertoire Classification

Multiple Instance Learning:

- Extract few patterns from a large set of sequences, the repertoire, that are indicative for the respective immune status.
- About **300,000 instances** per immune repertoire.
- One of the largest MIL tasks ever conducted.
- HopfieldPooling outperformed all other methods.

NeurIPS2020 Spotlight Paper "Modern Hopfield Networks and Attention for Immune Repertoire Classification"

MIL Benchmark Datasets

MIL datasets Elephant, Fox and Tiger for image annotation:

□ Color images consist of a set of segments (1391; 1320; 1220)

□ Segment has 230 color, texture and shape descriptors

UCSB breast cancer classification (cancerous or normal):

2000 instances across 58 input objects

Instance: patch of a histopathological image

Method	tiger	fox	elephant	UCSB
Hopfield (ours)	91.3 ± 0.5	64.05 ± 0.4	94.9 ± 0.3	89.5 ± 0.8
Path encoding (Küçükaşcı & Baydoğan, 2018)	$91.0 \pm 1.0^{\mathrm{a}}$	$71.2 \pm 1.4^{\mathrm{a}}$	$94.4\pm0.7^{\mathrm{a}}$	88.0 ± 2.2^{a}
MInD (Cheplygina et al., 2016)	$85.3 \pm 1.1^{\mathrm{a}}$	$70.4 \pm 1.6^{\mathrm{a}}$	$93.6\pm0.9^{\mathrm{a}}$	$83.1 \pm 2.7^{\mathrm{a}}$
MILES (Chen et al., 2006)	$87.2\pm1.7^{ m b}$	$73.8 \pm \mathbf{1.6^{a}}$	$92.7\pm0.7^{\mathrm{a}}$	$83.3\pm2.6^{\mathrm{a}}$
APR (Dietterich et al., 1997)	$77.8\pm0.7^{\mathrm{b}}$	$54.1\pm0.9^{\mathrm{b}}$	$55.0\pm1.0^{\mathrm{b}}$	_
Citation-kNN (Wang, 2000)	$85.5\pm0.9^{\mathrm{b}}$	$63.5\pm1.5^{\mathrm{b}}$	$89.6\pm0.9^{\mathrm{b}}$	$70.6 \pm 3.2^{\mathrm{a}}$
DD (Maron & Lozano-Pérez, 1998)	84.1 ^b	63.1^{b}	90.7^{b}	—

Small UCI Benchmark Collection

Small datasets of the UCI Benchmark Collection (UCI):

- Deep Learning struggles with small datasets.
- Layer **HopfieldLayer** can store the training data.
- Enables similarity-based or nearest neighbor methods.
- 121 UCI datasets: 75 "small datasets" with less than 1000 samples
- Hopfield Networks outperform all other methods.

Experiments Drug Design

Four main areas of modeling tasks in drug design:

- New anti-virals (HIV) by the Drug Therapeutics Program (DTP)
- New protein inhibitors: human β-secretase (BACE) inhibitors
- Metabolic effects as blood-brain barrier permeability (BBBP)
- Side effects from the Side Effect Resource (SIDER)

Model	HIV	BACE	BBBP	SIDER
SVM	0.822 ± 0.020	0.893 ± 0.020	0.919 ± 0.028	0.630 ± 0.021
XGBoost	0.816 ± 0.020	0.889 ± 0.021	0.926 ± 0.026	0.642 ± 0.020
RF	0.820 ± 0.016	0.890 ± 0.022	0.927 ± 0.025	0.646 ± 0.022
GCN	0.834 ± 0.025	0.898 ± 0.019	0.903 ± 0.027	0.634 ± 0.026
GAT	0.826 ± 0.030	0.886 ± 0.023	0.898 ± 0.033	0.627 ± 0.024
DNN	0.797 ± 0.018	0.890 ± 0.024	0.898 ± 0.033	0.627 ± 0.024
MPNN	0.811 ± 0.031	0.838 ± 0.027	0.879 ± 0.037	0.598 ± 0.031
Attentive FP	0.822 ± 0.026	0.876 ± 0.023	0.887 ± 0.032	0.623 ± 0.026
Hopfield (ours)	0.815 ± 0.023	0.902 ± 0.023	0.910 ± 0.026	0.672 ± 0.019

Deep Learning with Memories

- The goal is to integrate associative memories into Deep Learning architectures.
- With Modern continuous Hopfield Networs we have a tool to do that.
- Deep Learning that goes beyond Convolutional and Recurrent Networks.
- Operations: pooling, memory, association, and attention mechanisms
- Can substitute: SVM, k-nearest neighbors, LVQ

ICLR2021 paper: https://arxiv.org/abs/2008.02217

Blog post: https://ml-jku.github.io/hopfield-layers/

Software: https://github.com/ml-jku/hopfield-layers/

Video (Yannic Kilcher):

https://www.youtube.com/watch?v=nv6oFDp6rNQ