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Overview

� How to equip Deep Learning architectures with memories:
� Motivation for continuous modern Hopfield Networks
� Properties of continuous modern Hopfield Networks
� Relation to Transformers

� New layers for Deep Learning architectures
� New Hopfield layers

� New Hopfield layers at work
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Deep Learning with Memories

� The goal is to integrate
associative memories into
Deep Learning
architectures.

� Deep Learning that goes
beyond convolutional and
recurrent networks.
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Deep Learning with Associative Memories

� Association of sets

� Pattern search in sets

� Pooling operations

� Memories (LSTM, GRU)

� Learning prototypes

� Transformer attention

� Sequence-to-sequence

� Point sets

� Multiple instance learning

� k-nearest neighbor of set

Modern Hopfield Networks as tool to equip Deep Learning
architectures with memory.
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Classical Hopfield Networks

� Hopfield Networks (Hopfield 1982)

� N binary patterns {x1, . . . ,xN} with xi ∈ {−1, 1}d

� Weight matrix W stores the N binary patterns: W =
N∑
i

xix
T
i

� State (query) pattern ξ ∈ {−1, 1}d.

� Update rule ξnew = sgn (Wξ − b) with threshold b minimizes the
energy function:

E = −1
2ξ

TWξ + ξT b = −1
2

N∑
i=1

(ξTxi)2 + ξT b (1)

� Convergence is reached if ξnew = ξ.
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Classical Hopfield Networks

Weight matrix W =
1∑
i

xix
T
i

to store pattern

Update rule ξnew = sgn (Wξ − b) to retrieve pattern
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Classical Hopfield Networks

Undesired retrieval
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Classical Hopfield Networks

Spurious minima: patterns are correlated
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Modern Hopfield Networks

� Krotov & Hopfield (2016)

� E =
N∑
i

F (ξTxi), where F (z) = za is the interaction function.

� For a = 2, we obtain the classical Hopfield Networks:

E = 1
2

N∑
i

(ξTxi)2

� Storage capacity is polynomial in d:
� Storage means that patterns are fixed points of the update rule.
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Modern Hopfield Networks

� Demircigil et al. (2017)

� E =
N∑
i

F (ξTxi), where F (z) = exp (z) is the interaction

function.

� Storage capacity is exponential in d.

� Convergence / retrieval after one update.
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Modern Hopfield Networks
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New Energy Function

� Modern Hopfield Networks are
binary.

� We want to extend them
towards Continuous Hopfield
Networks:
� Differentiability for gradient

descent in Deep Networks.
� Retrieval with one update to

activate the layer.
� High storage capacity for

complex systems.
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New Energy Function / New Update Rule

E = −lse(β,XTξ) + 1
2ξ

Tξ + β−1 logN + 1
2M

2

� N stored (key) patterns xi ∈ Rd are from a d-dimensional
space

� Pattern matrix X = (x1, . . . ,xN )
� Largest pattern M = maxi ||xi||
� State (query) pattern ξ

� lse(β,a) = β−1 log
(

N∑
i=1

exp(βai)
)

ξnew = f(ξ) = Xsoftmax(βXTξ)
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Properties of New Energy Function

� The new energy function generalizes the energy of binary
modern Hopfield Networks (Demircigil et al. 2017) to continuous
valued patterns.

� Important properties are kept:
� Exponential storage capacity (Theorem 3 in the paper)
� Retrieval after one update (Theorem 4 in the paper)

� Additionally, global convergence to a local minimum proven
(Theorem 2 in the paper).
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Convergence to Stationary Points

Theorem of Convergence to Stationary Point.
For the iteration with the update rule we have E

(
ξt
)
→ E (ξ∗) = E∗ as t → ∞,

for some stationary point ξ∗. Furthermore,
∥∥ξt+1 − ξt

∥∥ → 0 and either {ξt}∞t=0
converges or, in the other case, the set of limit points of {ξt}∞t=0 is a connected and
compact subset of L (E∗), where L (a) = {ξ ∈ L | E (ξ) = a} and L is the set
of stationary points of the iteration. If L (E∗) is finite, then any sequence {ξt}∞t=0
generated by the iteration converges to some ξ∗ ∈ L (E∗).

� All limit points of any sequence generated by the iteration
ξnew = f(ξ) = Xsoftmax(βXT ξ)
are stationary points (local minima or saddle points) of the
energy function E.
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Exponential storage capacity

� First we have to define, storing/retrieving patterns with a
modern Hopfield Network:

Definition of Retrieved and Stored Patterns.
We assume that around every pattern xi a sphere Si is given. We say xi is stored
if there is a single fixed point x∗i ∈ Si to which all points ξ ∈ Si converge, and
Si ∩ Sj = ∅ for i 6= j. We say xi is retrieved for a given ε if iteration (update rule)
gives a point x̃i that is at least ε-close to the single fixed point x∗i ∈ Si. The retrieval
error is ‖x̃i − xi‖.
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Exponential storage capacity

Theorem of Exponential Storage Capacity.
We assume a failure probability 0 < p ≤ 1 and randomly chosen patterns on the
sphere with radius M := K

√
d− 1. We define a := 2

d−1 (1 + ln(2βK2p(d − 1))),

b := 2K2β
5 , and c := b

W0(exp(a+ln(b)) , where W0 is the upper branch of the Lambert

W function, and ensure c ≥
(

2√
p

) 4
d−1

. Then with probability 1 − p, the number of

random patterns that can be stored is

N ≥ √p c
d−1

4 .

Therefore it is proven for c ≥ 3.1546 with β = 1, K = 3, d = 20 and p = 0.001
(a + ln(b) > 1.27) and proven for c ≥ 1.3718 with β = 1, K = 1, d = 75, and
p = 0.001 (a+ ln(b) < −0.94).

� Exponential storage capacity in the dimension d of the
patterns (xi ∈ Rd)
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Retrieval with one update

� The update rule retrieves patterns with one update for well
separated patterns, that is, patterns with large ∆i:

Theorem of Retrieval with One Update.
With query ξ, after one update the distance of the new point f(ξ) to the fixed point x∗i
is exponentially small in the separation ∆i. The precise bounds using the Jacobian
J = ∂f(ξ)

∂ξ
and its value Jm in the mean value theorem are:

‖f(ξ) − x∗i ‖ ≤ ‖J
m‖2 ‖ξ − x∗i ‖ ,

‖Jm‖2 ≤ 2 β N M2 (N − 1)

exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) .

For given ε and sufficient large ∆i, we have
∥∥f(ξ) − x∗i

∥∥ < ε, that is, retrieval with
one update.

∆i := minj,j 6=i

(
xT

i xi − xT
i xj

)
= xT

i xi − maxj,j 6=i x
T
i xj

� The retrieval error decreases exponentially with the
separation ∆i (Theorem 5 in the paper).
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Global Fixed Point and Metastable States

� If no pattern xi ∈ Rd is well separated, then the iterate
converges to a global fixed point close to the arithmetic mean
of the vectors (softmax is close to uniform).

� Metastable states:
� Some vectors are similar to each other,
� but well separated from other vectors.
� Fixed point near the similar patterns (metastable state).
� Iterates that start near the metastable state converge to it.
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New Modern Hopfield Networks

ξnew = f(ξ) = Xsoftmax(βXT ξ)

β = 8
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New Modern Hopfield Networks

ξnew = f(ξ) = Xsoftmax(βXT ξ)

β = 0.5
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New Modern Hopfield Networks
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New Update Rule = Transformer Attention

� Hopfield update:

ξnew = f(ξ) = Xsoftmax(βXT ξ)

� Transformer attention:
softmax(1/

√
dkQK

T )V

softmax ∈ RN is a row vector

yi ∈ Rd is a data vector

xi ∈ Rd is stored (key) pattern

ξi ∈ Rd is state (query) pattern

yi ∈ Rdy

xi = W T
Kyi ∈ Rdk , WK ∈ Rdy×dk

ξi = QT
Kyi ∈ Rdk , WQ ∈ Rdy×dk

Y = (y1, . . . ,yN )T ∈ RN×dy

XT = K = YWK ∈ RN×dk

ΞT = Q = YWQ ∈ RN×dk

V = YWKWV = XTWV ∈ RN×dv

WV ∈ Rdk×dv

β = 1√
dk
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Deep Learning with Memories

� The goal is to integrate
associative memories into
Deep Learning
architectures.

� With Modern continuous
Hopfield Networks we now
have a tool to do that.
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Deep Learning with Memories

� The goal is to integrate associative memories into Deep
Learning architectures.

� With Modern continuous Hopfield Networs we now have a tool
to do that.

= softmax( )

= softmax( )

= softmax( )
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New Hopfield Layers

� Hopfield:
Propagate R and Y

Transformer attention

� HopfieldPooling:
Propagate Y

Multiple instances
Sequences (LSTMs)

� HopfieldLayer:
Propagate R

SVM, k-NN

= softmax ( )

= softmax ( )

= softmax ( )

= softmax ( )

= softmax ( )

= softmax ( )
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Layer Hopfield

= softmax ( )

= softmax ( )

� Association of raw state (query) patterns R and raw stored
(key) patterns Y

� Association of two sets R and Y

� This layer works for:
� Transformer attention (associates keys and queries)
� Sequence-to-sequence learning
� Point set operations
� Retrieval-based methods
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Layer Hopfield Pooling

= softmax ( )

= softmax ( )

� Queries Q and raw stored (key) patterns Y

� Result is mapped by WV .
� Fixed pattern search of Q in Y :

� Pooling of Y guided by Q.
� Memories of sequence or set Y

� This layer can potentially substitute:
� Pooling
� LSTMs / GRUs applied to Y

� Multiple instance learning, patterns search
� 2-D position encoding: convolutions

28/39



Layer HopfieldLayer

= softmax ( )

= softmax ( )

� Raw state (query) patterns R and stored patterns WK

� This layer can potentially substitute:
� k-nearest neighbor if WK are training data
� SVM if prototypes WK are support vectors
� Similarity-based if WK are training data
� Learning vector quantization (LVQ) if WK are the cluster centers
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Additional Functionalities

� Multiple updates to control how
precise fixed points are found.

� Variable β: kind of fixed point /
size of metastable states:
� β controls over how many

patterns is averaged.
� Relevant in combination with the

learning rate to steer learning.

� Controlling the storage capacity
via the associative dimension.

� Pattern normalization by
layernorm (controls fixed point
dynamics).

MatMul

Q K

Scale

Softmax

Mask

yes no

V

MatMul

MatMul

K

multiple
updates

LNorm

normalize
yes

no
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LNorm
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project
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LNorm

normalize
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LNorm

normalize
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no
LNorm

normalize
yes
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R Y Y

project project

WVWKWQ

30/39



Experiments

� We have already successfully applied Hopfield layers to a wide
range of tasks:
� Natural Language Processing
� Multiple instance learning problems (MIL)
� Small classification tasks (UCI)
� Drug design problems
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Experiments NLP

Minimal number k required to sum up the softmax values to 0.90:
k indicates the size of a metastable state.
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� Very large metastable
state or global fixed
point (layer 1)

� Large metastable
state (layers 3, 4, 5)

� Medium metastable
state (layers 10, 11,
12). Information
collected that is
required for the task.

� Small metastable
state or fixed point
close to a single patters
(layers 6, 7, and 8)
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Experiments: MIL

Multiple Instance Learning (MIL):

� Memory of new modern Hopfield Network is promising for MIL.

� HopfieldPooling as Hopfield layer in Deep Learning
architectures.

= softmax ( )

= softmax ( )

Datasets:

1. Immune Repertoire Classification

2. MIL benchmark datasets
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Immune Repertoire Classification

Multiple Instance Learning:

� Extract few patterns from a large set of sequences, the
repertoire, that are indicative for the respective immune status.

� About 300,000 instances per immune repertoire.

� One of the largest MIL tasks ever conducted.

� HopfieldPooling outperformed all other methods.

NeurIPS2020 Spotlight Paper “Modern Hopfield Networks and
Attention for Immune Repertoire Classification”
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MIL Benchmark Datasets

� MIL datasets Elephant, Fox and Tiger for image annotation:
� Color images consist of a set of segments (1391; 1320; 1220)
� Segment has 230 color, texture and shape descriptors

� UCSB breast cancer classification (cancerous or normal):
� 2000 instances across 58 input objects
� Instance: patch of a histopathological image
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Small UCI Benchmark Collection

Small datasets of the UCI Benchmark Collection (UCI):

� Deep Learning struggles with small datasets.

� Layer HopfieldLayer can store the training data.

� Enables similarity-based or nearest neighbor methods.

� 121 UCI datasets: 75 “small datasets” with less than 1000
samples

� Hopfield Networks outperform all other methods.

= softmax ( )

= softmax ( )
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Experiments Drug Design

Four main areas of modeling tasks in drug design:

� New anti-virals (HIV) by the Drug Therapeutics Program (DTP)

� New protein inhibitors: human β-secretase (BACE) inhibitors

� Metabolic effects as blood-brain barrier permeability (BBBP)

� Side effects from the Side Effect Resource (SIDER)
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Deep Learning with Memories

� The goal is to integrate associative
memories into Deep Learning
architectures.

� With Modern continuous Hopfield
Networs we have a tool to do that.

� Deep Learning that goes beyond
Convolutional and Recurrent
Networks.

� Operations: pooling, memory,
association, and attention
mechanisms

� Can substitute: SVM, k-nearest
neighbors, LVQ
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Material

ICLR2021 paper: https://arxiv.org/abs/2008.02217

Blog post: https://ml-jku.github.io/hopfield-layers/

Software: https://github.com/ml-jku/hopfield-layers/

Video (Yannic Kilcher):
https://www.youtube.com/watch?v=nv6oFDp6rNQ
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