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Overview

B How to equip Deep Learning architectures with memories:

0 Motivation for continuous modern Hopfield Networks
O Properties of continuous modern Hopfield Networks
O Relation to Transformers

B New layers for Deep Learning architectures
0 New Hopfield layers

B New Hopfield layers at work
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Deep Learning with Memories

L L
B The goal is to integrate C ) ( - &
associative memories into 1 1
: 1+ 1+
B Deep Learning that goes C ) ( ) &=
beyond convolutional and 4 4
recurrent networks. C D) ( ) -
1) 1)
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Deep Learning with Associative Memories

B Association of sets B Transformer attention

B Pattern search in sets B Sequence-to-sequence

B Pooling operations B Point sets

B Memories (LSTM, GRU) B Multiple instance learning
B Learning prototypes B k-nearest neighbor of set

Modern Hopfield Networks as tool to equip Deep Learning
architectures with memory.
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Classical Hopfield Networks

B Hopfield Networks (Hopfield 1982)

B N binary patterns {zy,...,zy} with z; € {—1,1}¢
N
B Weight matrix W stores the N binary patterns: W = Z xxl

B State (query) pattern & € {—1,1}.

B Update rule €™ = sgn (W ¢ — b) with threshold b minimizes the
energy function:

N

E= € We+eTb=— > () +€T (1)
i=1

B Convergence is reached if £"% = €.
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Classical Hopfield Networks

1
Weight matrix W = > " a;x]

to store pattern

Update rule £ = sgn (W ¢ — b) to retrieve pattern

—
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Classical Hopfield Networks

Undesired retrieval
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Classical Hopfield Networks

Spurious minima: patterns are correlated

traininput 1 traininput 5 train mput & masked tast image retreved
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Modern Hopfield Networks

B Krotov & Hopfield (2016)
N
W E=) F(¢"z;), where F(z) = z* is the interaction function.

B For a = 2, we obtain the classical Hopfield Networks:
N

1 T, \2
B Storage capacity is polynomial in d:
[J Storage means that patterns are fixed points of the update rule.
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Modern Hopfield Networks

B Demircigil et al. (2017)
N
B E=) F(¢" ), where F(z) = exp () is the interaction
function.
B Storage capacity is exponential in d.
B Convergence / retrieval after one update.
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Modern Hopfield Networks
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New Energy Function

B Modern Hopfield Networks are
binary.

B We want to extend them
towards Continuous Hopfield
Networks:

O Differentiability for gradient
descent in Deep Networks.

0 Retrieval with one update to
activate the layer.

0 High storage capacity for
complex systems.
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New Energy Function / New Update Rule

E=—lse(3, X7¢) + ;gTs + B log N + L

2
B N stored (key) patterns x; ¢ R? are from a d-dimensional
space
B Pattern matrix X = (x1,...,xnN)

B Largest pattern M = max; ||x;||
B State (query) pattern &

N
W Ise(B,a) = B 'log (Z eXP(ﬁ%))

i=1

£new — f(¢) = Xsoftmax(ﬁXTE)
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Properties of New Energy Function

B The new energy function generalizes the energy of binary
modern Hopfield Networks (Demircigil et al. 2017) to continuous
valued patterns.

B Important properties are kept:

0O Exponential storage capacity (Theorem 3 in the paper)
0 Retrieval after one update (Theorem 4 in the paper)

B Additionally, global convergence to a local minimum proven
(Theorem 2 in the paper).

14/39



Convergence to Stationary Points

Theorem of Convergence to Stationary Point.

For the iteration with the update rule we have E (.ﬁt) — E(¢*) = E* as t — oo,

for some stationary point £*. Furthermore, Hg”l —¢t H — 0 and either {152,
converges or, in the other case, the set of limit points of {£'}9°  is a connected and
compact subset of L (E*), where L (a) = {¢& € L | E(§) = a} and L is the set
of stationary points of the iteration. If L (E*) is finite, then any sequence {&'}2°
generated by the iteration converges to some ¢* € L (E*).

B All limit points of any sequence generated by the iteration
£ = f(€) = Xsoftmax(8X 7€)
are stationary points (local minima or saddle points) of the
energy function E.
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Exponential storage capacity

B First we have to define, storing/retrieving patterns with a
modern Hopfield Network:

Definition of Retrieved and Stored Patterns.

We assume that around every pattern «; a sphere S; is given. We say «; is stored
if there is a single fixed point = € S; to which all points £& € S; converge, and
SiNS; = 0 fori # j. We say x; is retrieved for a given e if iteration (update rule)
gives a point &; that is at least e-close to the single fixed point * € S;. The retrieval
erroris ||&; — a;]|.
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Exponential storage capacity

Theorem of Exponential Storage Capacity.

We assume a failure probability 0 < p < 1 and randomly chosen patterns on the
sphere with radius M := K+/d— 1. We define a := -2+ (1 + In(28K?p(d — 1))),

._ 2K°8
b= 25

,andc:= where Wy, is the upper branch of the Lambert

b
Wo (exp(a+In(b))’

W function, and ensure ¢ > %) “" Then with probability 1 — p, the number of

random patterns that can be stored is

d—1
N > \/pc T .

Therefore it is proven for ¢ > 3.1546 with 8 = 1, K = 3, d = 20 and p = 0.001
(a + In(b) > 1.27) and proven for ¢ > 1.3718 with p = 1, K = 1, d = 75, and
p = 0.001 (a+ In(b) < —0.94).

B Exponential storage capacity in the dimension d of the
patterns (x; € RY)
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Retrieval with one update

B The update rule retrieves patterns with one update for well
separated patterns, that is, patterns with large A;:

Theorem of Retrieval with One Update.

With query &, after one update the distance of the new point f (&) to the fixed point x

is exponentially small in the separation A;. The precise bounds using the Jacobian
of (&)

J=

o and its value J™ in the mean value theorem are:

7€) — =il <IJ™; 1§ — =il
9™, <28 N M?(N-1)
exp(— B (A — 2 max{[|§ — @i, [|=] — @} M)).

For given e and sufficient large A;, we have || HE) = e
one update.

< ¢, that is, retrieval with

o mins s (2T — 2T = T, — T
Aj = ming iz (2] 2 — afz;) = af @z — max; ;. xla;

B The retrieval error decreases exponentially with the

separation A; (Theorem 5 in the paper).
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Global Fixed Point and Metastable States

B If no pattern x; € R? is well separated, then the iterate
converges to a global fixed point close to the arithmetic mean
of the vectors (softmax is close to uniform).

B Metastable states:

[J Some vectors are similar to each other,
O but well separated from other vectors.

[0 Fixed point near the similar patterns (metastable state).
O lterates that start near the metastable state converge to it.
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New Modern Hopfield Networks

£ = f(¢) = Xsoftmax(3XT¢)

............................

train nput 13 train nput 14 ain input 15 wain nput 16 train input 17 ain nput 18
ain mput 19 ain input 20 ain input 21 ain input 22 ain inpat 23 ain input 24
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New Modern Hopfield Networks

£ = f(¢) = Xsoftmax(3XT¢)
3=05

............................

train nput 13 train nput 14 ain input 15 wain nput 16 train input 17 ain nput 18
ain mput 19 ain input 20 ain input 21 ain input 22 ain inpat 23 ain input 24
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New Modern Hopfield Networks

-> %

.

masked beta — 0 . 2 5 retrieved b eta = 2 O 0 retrieved
= 9

-

masked beta = 0 . 5 0 retrieved b eta — 4 0 0 retrieved

> >

masked beta = 1.00 beta = 8.00 reneved
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New Update Rule = Transformer Attention

B Hopfield update:
[Enew = f(&) = XSOftmaX(ﬂXTS)]

y; € R
B Transformer attention: z; = Why; € R%, Wi € Rivxd
softmax(l/\/chQKT)V & = TI;yZ c de, WQ € Ry xdx
Y = (y1,...,yn)T € RVXdy
XT = K =YWy € RVXd
ET=Q =YW, € RVxd
V = YWKWV = XTWV S RN xdv

Wy € Rk Xdv
softmax € R¥ is a row vector g =1
Vdy

y; € R% is a data vector
xz; € R? is stored (key) pattern
¢&; € R4 is state (query) pattern
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Deep Learning with Memories

1t L

B The goal is to integrate C ) C c -
associative memories into L 3 L 3
L L

B With Modern continuous  ( ) C D =
Hopfield Networks we now 4 4

have a tool to do that. C D) ( ) &
1) 1)
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Deep Learning with Memories

B The goal is to integrate associative memories into

B With Modern continuous Hopfield Networs we now have a tool
to do that.

1t 1+
Z =softmax(B8 R YT ) v C D) ( @ &
_=softmax( L I )- f f
1o [ ——
El-ocBmi iy + 1
o e ) e «
+ 1)
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New Hopfield Layers

B Hopfield:

Propagate 72 and v
Transformer attention

B HopfieldPooling:

Propagate v
Multiple instances
Sequences (LSTMs)

B HopfieldLayer:

Propagate 72
SVM, k-NN

z =softmax(8 R wWo whYT) Y Wy

- 0 ) i

z =softmax (8 Q Wi YT) Y Wy

-=softmax( D:D@ I)- @

z =softmax(ﬁ R W,T( ) Wy

o D

z

i >
@ ®-r

1

R

o

Q*B»N
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Layer Hopfield

z =softmax(p R Wq WL YT) Y Wy

- (o 5 e CI'”

B Association of raw state (query) patterns 12 and raw stored
(key) patterns Y

W Association of two sets /7 and Y
B This layer works for:

0 Transformer attention (associates keys and queries)
[J Sequence-to-sequence learning

J Point set operations

0 Retrieval-based methods
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Layer Hopfield Pooling

z =sotmax(f Q@ Wi YT) Y Wy

-=softmax D@I - @ Cj

B Queries Q and raw stored (key) patterns YV
B Result is mapped by Wy,
B Fixed pattern search of Q in V':
O Pooling of ¥ guided by Q.
0 Memories of sequence or set Y
B This layer can potentially substitute:
O Pooling
00 LSTMs / GRUs applied to Y
0 Multiple instance learning, patterns search
O 2-D position encoding: convolutions
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Layer HopfieldLayer

Z = softmax ( 8 R W}; ) Wy %
I - oo (- ) B e
R
| and stored patterns Wy

B This layer can potentially substitute:
O k-nearest neighbor if Wi are training data
00 SVM if prototypes Wi are support vectors
O Similarity-based if Wi are training data
O Learning vector quantization (LVQ) if W are the cluster centers
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Additional Functionalities

B Multiple updates to control how
precise fixed points are found.
B Variable g: kind of fixed point /
size of metastable states:
O S controls over how many
patterns is averaged.
0 Relevant in combination with the
learning rate to steer learning.
B Controlling the storage capacity
via the associative dimension.

B Pattern normalization by
layernorm (controls fixed point
dynamics).
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Experiments

B We have already successfully applied Hopfield layers to a wide
range of tasks:
J Natural Language Processing
O Multiple instance learning problems (MIL)
0 Small classification tasks (UCI)
0 Drug design problems
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Experiments NLP

Minimal number k required to sum up the softmax values to 0.90:

k indicates the size of a metastable state.

;%%%%%%%%%%%%

gngTTTTTTT?fT
[ EFFEF s
PSSt dd - e
F TSP T E= ST TS
iSTHPFE=EET ]
iZe A+ PES=TEVS
PO TEEEE T W]
PP EEEP TP
O TTEPTT
eI TETT TP
PR TS

Very large metastable
state or global fixed
point (layer 1)

(layers 3, 4, 5)
Medium metastable
state (layers 10, 11,
12). Information
collected that is
required for the task.

or fixed point
close to a single patters
(layers 6, 7, and 8)
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Experiments: MIL

Multiple Instance Learning (MIL):

B Memory of new modern Hopfield Network is promising for MIL.

B HopfieldPooling as Hopfield layer in Deep Learning
architectures.

VA =softmax(ﬂ Q wkt YT) Y Wy

-=softmax @ I . @ @

Datasets:

1. Immune Repertoire Classification
2. MIL benchmark datasets
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Immune Repertoire Classification

Multiple Instance Learning:
B Extract few patterns from a large set of sequences, the
repertoire, that are indicative for the respective immune status.
B About 300,000 instances per immune repertoire.
B One of the largest MIL tasks ever conducted.
B HopfieldPooling outperformed all other methods.

NeurlPS2020 Spotlight Paper “Modern Hopfield Networks and
Attention for Immune Repertoire Classification”
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MIL Benchmark Datasets

B MIL datasets Elephant, Fox and Tiger for image annotation:
[J Color images consist of a set of segments (1391; 1320; 1220)
J Segment has 230 color, texture and shape descriptors
B UCSB breast cancer classification (cancerous or normal):
[J 2000 instances across 58 input objects
O Instance: patch of a histopathological image

Method tiger fox elephant UCSB
Hopfield (ours) 91.3+0.5 64.05+£04 949+03 895+0.8
Path encoding (Kiiciikascr & Baydogan, 2018)  91.0£1.0* 712+ 1.4% 944+0.7° 88.0£2.2°
MInD (Cheplygina et al, 2016) 85.3+1.1* 704+1.6° 93.6+0.9° 831+27
MILES (Chen et al, 2006) 87.2+1.7° 738+1.6° 927+0.7° 833+ 26
APR (Dietterich et al., 1997) T7.8+£0.7° 54.1£0.9" 550+ 1.0° —
Citation-kNN (Wang, 2000) 85.54£0.9° 63.5£15" 89.6+0.9° 70.6+3.2
DD (Maron & Lozano-Pérez, 1998) 84.1° 63.1° 90.7° —
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Small UCI Benchmark Collection

Small datasets of the UCI Benchmark Collection (UCI):

B Deep Learning struggles with small datasets.
B Layer HopfieldLayer can store the training data.
B Enables similarity-based or nearest neighbor methods.

W 121 UCI datasets: 75 “small datasets” with less than 1000
samples

B Hopfield Networks outperform all other methods.

T

Z =softmax(ﬂ R Wg )WV z

- ) -

R
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Experiments Drug Design

Four main areas of modeling tasks in drug design:

B New anti-virals (HIV) by the Drug Therapeutics Program (DTP)

B New protein inhibitors: human S-secretase (BACE) inhibitors

B Metabolic effects as blood-brain barrier permeability (BBBP)
B Side effects from the Side Effect Resource (SIDER)

Model HIV BACE BBBP SIDER
SVM 0.822 + 0.020 0.893 £ 0.020 0.919 +0.028 0.630 £ 0.021
XGBoost 0.816 £ 0.020 0.889+£0.021 0.926+0.026 0.642 £ 0.020
RF 0.820 £ 0.016 0.890£0.022 0.927+0.025 0.646 £+ 0.022
GCN 0.834£0.025 0.898 £0.019 0.903 +£0.027  0.634 + 0.026
GAT 0.826 + 0.030 0.886 £ 0.023 0.898 +0.033 0.627 £ 0.024
DNN 0.797 £0.018 0.890 £ 0.024 0.898 4+ 0.033 0.627 £ 0.024
MPNN 0.811 + 0.031 0.838 +0.027 0.879+0.037  0.598 + 0.031
Attentive FP 0.822 + 0.026 0.876 £+ 0.023 0.887 +0.032 0.623 £+ 0.026
Hopfield (ours)  0.8154+0.023 0.902+£0.023 0.910+£0.026 0.672+0.019
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Deep Learning with Memories

B The goal is to integrate associative
memories into

B With Modern continuous Hopfield L L)
Networs we have a tool to do that. ry ) € fi *

B Deep Learning that goes beyond : :

Convolutional and Recurrent 4 4
Networks. C ) ( D @&

W Operations: pooling, memory, 1 1
g Paom Y ) amE «

association, and attention
mechanisms

B Can substitute: SVM, k-nearest
neighbors, LVQ
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Material

ICLR2021 paper: https:/arxiv.org/abs/2008.02217

Blog post: https://ml-jku.github.io/hopfield-layers/

Software: https://github.com/ml-jku/hopfield-layers/

Video (Yannic Kilcher):
https://www.youtube.com/watch?v=nv6oFDp6rNQ
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