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Conventionally, efforts in deep learning research wish
to make neural networks train easier.



Conventionally, efforts in deep learning research wish
to make neural networks train easier.

* Smart architectures

* Optimizers / regularizers
* |nitialization schemes

* Normalization methods



However a line of rather uUnconventional work focuses
on training neural networks In rather difficult ways, most

INnvolving not optimizing In the original weight space.

I’d liIke to cover a tew of those work that | was fortunate to
have been closely admiring & directly involved in.



However a line of rather uUnconventional work focuses
on training neural networks In rather difficult ways, most

INvolving not optimizing In the original weight space.

I’d liIke to cover a tew of those work that | was fortunate to
have been closely admiring/& directly involved in.



1. Indirect encoding [staniey et al. 2009; Ha et al. 2017]




1. Indirect encoding [staniey et al. 2009; Ha et al. 2017]




1. Indirect encoding [staniey et al. 2009; Ha et al. 2017]




1. Indirect encoding [staniey et al. 2009; Ha et al. 2017]
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HYPERNETWORKS

David Ha; Andrew M. Dai, Quoc V. Le
Google Brain
{hadavid, adai,gvl}@google.com

ABSTRACT

This work explores hypernetworks: an approach of using one network, also known
as a hypernetwork, to generate the weights for another network. We apply hy-
pernetworks to generate adaptive weights for recurrent networks. In this case,
hypernetworks can be viewed as a relaxed form of weight-sharing across layers.
In our implementation, hypernetworks are are trained jointly with the main net-
work in an end-to-end fashion. Our main result is that hypernetworks can gener-
ate non-shared weights for LSTM and achieve state-of-the-art results on a variety
of sequence modelling tasks including character-level language modelling, hand-
writing generation and neural machine translation, challenging the weight-sharing
paradigm for recurrent networks.




A hypernetwork generates the weights for a
feedforward network.

layer index
and other information
about the weight



INtrinsic dimension [Liet al. 2018]

Published as a conference paper at ICLR 2018

MEASURING THE INTRINSIC DIMENSION
OF OBJECTIVE LANDSCAPES

Chunyuan Li * Heerad Farkhoor, Rosanne Liu, and Jason Yosinski
Duke University Uber Al Labs
cl319@duke.edu {heerad, rosanne, yosinski}@uber.com
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Summary of “Intrinsic Dimension”

e \Ve use this weird way of training networks in a random subspace, with a
dimension much smaller than that of the original space

e Ve found the minimum dimension trainable Is a fairly stable metric across a
family of models for a given dataset

e [t says something about model capacity: as we add more parameters, we
iIncrease how much the solution set covers the space

e Model compressibility & Minimum Description Length
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Deconstructing Lottery Tickets: Supermasks in Superposition

Zeros, Signs, and the Supermask

Mitchell Wortsman™ Vivek Ramanujan*  Rosanne Liu  Aniruddha Kembhavi'
University of Washington  Allen Institute for Al ML Collective Allen Institute for Al

Hattie Zhou Janice Lan Rosanne Liu Jason Yosinski
Uber Uber Al Uber Al Uber Al Mohammad Rastegari Jason Yosinski Ali Farhadi
hattie@Quber.com janlan@uber.com rosanne@uber.com yosinski@uber.com University of Washington ML Collective University of Washington
Abstract Abstract

' . We nrecent the Sinermacke in Siinernncitign (SupSup) model, Capab]e of sequen-
The recent “Lottery Ticket Hypothesis™ paper catastrophic forgetting. Our approach
stmple approach to creating sparse networks What’s Hidden in a Randomly Weighted Neural Network?  twork and for each task finds a subnet-
in models that are trainable from scratch, but ormance. If task identity is given at test
initial weights. The performance of these netw 7ed with minimal memory usage. If not
of the non-sparse base model, but for reasons tk 3 gradient-based optimization to find a
paper we study the three critical components o Vivek Ramanujan * Mitchell Wortsman ** Aniruddha Kembhavi '# s which minimizes the output entropy.
showing that each may be varied significantly v . step is often sufficient to identify the
Ablating these factors leads to new insights fo: Ali Farhadi * Mohammad Rastegari * 1lso showcase two promising extensions.
as they do. We show why setting weights to z ly without task identity information, as
you need to make the reinitialized network trau; anw-waysnassang-venavesrmo wcy-may-uctovewaenrmmeysaresunvertanradOUt new data and allocate an additional
training. Finally, we discover the existence of Supermasks, masks that can be supermask for the new training distribution. Finally the entire, growing set of
applied to an untrained, randomly initialized network to produce a model with supermasks can be stored in a constant-sized reservoir by implicitly storing them

performance far better than chance (86% on MNIST, 41% on CIFAR-10). as attractors in a fixed-sized Hopfield network.




Network Pruning

Table 1: Network pruning can save 9x to 13X parameters with no drop in predictive performance.

Network Top-1 Error Top-5 Error | Parameters I(i;)trgpressmn
LeNet-300-100 Ref 1.64% - 267K

LeNet-300-100 Pruned | 1.59% - 22K 12 x

LeNet-5 Ref 0.80% - 431K

LeNet-5 Pruned 0.77% - 36K 12X
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 9 x

VGG-16 Ref 31.50% 11.32% 138M

VGG-16 Pruned 31.34% 10.88% 10.3M 13 %

IHan et al. 2015]



L ottery licket HypOtNesIS [Frankle & Carbin, 2019]

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin

MIT CSAIL MIT CSAIL

jfrankle@csail.mit.edu mcarbin@csail.mit.edu
ABSTRACT

Neural network pruning techniques can reduce the parameter counts of trained net-
works by over 90%, decreasing storage requirements and improving computational
performance of inference without compromising accuracy. However, contemporary
experience is that the sparse architectures produced by pruning are difficult to train
from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively. Based on these results, we
articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained in isolation—
reach test accuracy comparable to the original network in a similar number of
iterations. The winning tickets we find have won the initialization lottery: their
connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments
that support the lottery ticket hypothesis and the importance of these fortuitous
initializations. We consistently find winning tickets that are less than 10-20% of
the size of several fully-connected and convolutional feed-forward architectures
for MNIST and CIFAR10. Above this size, the winning tickets that we find learn
faster than the original network and reach higher test accuracy.

e e



| ottery licket Algorithm [Frankie & Carbin, 2019]

1.

Initialize a mask m of value ones. Randomly initialize the parameters
w of a network f(x; w © m).

Train the parameters w of the network f(x; w ® m) to completion. Denote
initial weight values as W; and final weight values as Wr.

Mask criterion: Use the mask criterion M(w;, wy) = \wf\ to produce a score
for each unmasked weight. Set the mask values of weights with the bottom
0% of score to O, and keep the remaining mask values at 1.

Mask-1 Action: Rewind weights with mask value 1 back to their initial values
and allow them to train in subsequent rounds.

Mask-0 Action: Set weights with mask value O to O and freeze during
subsequent rounds.



Deconstructing Lottery lickets [zhou et al. 2019

Deconstructing Lottery Tickets:
Zeros, Signs, and the Supermask

Hattie Zhou Janice Lan Rosanne Liu Jason Yosinski

Uber Uber Al Uber Al Uber Al
hattieQuber.com  janlan@uber.com rosanneQuber.com  yosinski@Quber.com

Abstract

The recent “Lottery Ticket Hypothesis” paper by Frankle & Carbin showed that a
simple approach to creating sparse networks (keeping the large weights) results
in models that are trainable from scratch, but only when starting from the same
initial weights. The performance of these networks often exceeds the performance
of the non-sparse base model, but for reasons that were not well understood. In this
paper we study the three critical components of the Lottery Ticket (LT) algorithm,
showing that each may be varied significantly without impacting the overall results.
Ablating these factors leads to new insights for why LT networks perform as well
as they do. We show why setting weights to zero is important, how signs are all
you need to make the reinitialized network train, and why masking behaves like
training. Finally, we discover the existence of Supermasks, masks that can be

applied to an untrained, randomly initialized network to produce a model with
performance far better than chance (86% on MNIST, 41% on CIFAR-10).




Deconstructing Lottery lickets [zhou et al. 2019

1.

Initialize a mask m of value ones. Randomly initialize the parameters
w of a network f(x; w © m).

Train the parameters w of the network f(x; w ® m) to completion. Denote
initial weight values as W; and final weight values as Wr.

Mask criterion: |Use the mask criterion M(w;, wy) = \wf\ to produce a score
for each unmasked weight. Set the mask values of weights with the bottom
0% of score to O, and keep the remaining mask values at 1.

Mask-1 Actioni Rewind weights with mask value 1 back to their initial values
and allow them to train in subsequent rounds.

Mask-0 Action: Set weights with mask value O to O and freeze during
subsequent rounds.



Deconstructing Lottery lickets [zhou et al. 2019

1. Initialize a mask m of value ones. Randomly initialize the parameters
w of a network f(x; w © m).

2. Train the parameters W of the network f(x; w ® m) to completion. Denote
initial weight values as W; and final weight values as Wr.

. . large final small final large init  small init llzirggee 1-“11?121 SSIIIIIISIII éﬁgl r?ﬁ%?;:;:e movement  random
3. | Mask criterion: Use the
lwy| —|wy]| |w; | —|w; | min(ew], [wi) —maz(alws, lwl) [wr| — |wi| |wg — w;] 0

Tor each unmasked we Es B < » Es M . Be

0% of score to O, and 47 & ¢ & o« & W O O

4, | Mask-1 Actioni Rewind weights with mask value 1 back to their initial values

and allow them to train in subsequent rounds.

5. | Mask-0 Action] Set weights with mask value O to O and freeze during

subsequent rounds.




Deconstructing Lottery lickets [zhou et al. 2019

S Supermasks

The hypothesis above suggests that for certain mask criteria, like large_final, that masking is training:
the masking operation tends to move weights in the direction they would have moved during training.
If so, just how powerful is this training operation? To answer this, we can start from the beginning—
not training the network at all, but simply applying a mask to the randomly initialized network.

It turns out that with a well-chosen mask, an untrained network can already attain a test accuracy
far better than chance. This might come as a surprise, because if you use a randomly initialized and
untrained network to, say, classify images of handwritten digits from the MNIST dataset, you would
expect accuracy to be no better than chance (about 10%). But now imagine you multiply the network
weights by a mask containing only zeros and ones. In this instance, weights are either unchanged or
deleted entirely, but the resulting network now achieves nearly 40 percent accuracy at the task! This
is strange, but it is exactly what we observe with masks created using the large_final criterion.

In randomly-initialized networks with large_final masks, it is not implausible to have better-than-
chance performance since the masks are derived from the training process. The large improvement in
performance is still surprising, however, since the only transmission of information from the training
back to the initial network is via a zero-one mask based on a simple criterion. We call masks that can
produce better-than-chance accuracy without training of the underlying weights “Supermasks”.

We now turn our attention to finding better Supermasks. First, we simply gather all masks instantiated
in the process of creating the networks shown in Figure 2, apply them to the original, randomly
initialized networks, and evaluate the accuracy without training the network. Next, compelled
by the demonstration in Section 3 of the importance of signs and in Section 4 of keeping large

* Additional control variants of this experiment can be seen in Supplementary Information Section S3.




Curiously Effective Masks at Initialization
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Curiously Effective Masks at Initialization
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Directly training Supermasks

/
. w' = w; ® g(m)
. W is the effective weight of the network

 (J is a point-wise function that transform a matrix of
continuous values into binary values

+ g(m) = Bern(S(m))
N
Sigmoid

pbernoulli sampler



Directly training Supermasks: Works!

o " DWR

| DWR

' learned learned learned learned

mask mask | mask mask mask mask |
O, ® ® ® ® ®» | trained
Network it S.C. | it  S.C.  init  S.C. | weights
MNIST FC 79.3 86.3 95.3 96.4 97.8 98.0 | 97.7
CIFAR Conv2 223 374 | 644 663 650 660 | 692
CIFAR Convd 237 397 | 654 662 717 725 | 754
CIFAR Conv6 240 410 | 653 | 783

65.4

76.3

76.5




Magic: someone made it work for ImageNet (&

What’s Hidden in a Randomly Weighted Neural Network?

Vivek Ramanujan * Mitchell Wortsman ** Aniruddha Kembhavi *

Ali Farhadi '*

Abstract

Training a neural network is synonymous with learning
the values of the weights. In contrast, we demonstrate that
randomly weighted neural networks contain subnetworks
which achieve impressive performance without ever train-
ing the weight values. Hidden in a randomly weighted Wide
ResNet-50 [~ ] we show that there is a subnetwork (with
random weights) that is smaller than, but matches the per-
formance of a ResNet-34 [ ] trained on ImageNet [ *]. Not
only do these “untrained subnetworks” exist, but we pro-
vide an algorithm to effectively find them. We empirically
show that as randomly weighted neural networks with fixed
weights grow wider and deeper, an “untrained subnetwork”
approaches a network with learned weights in accuracy.

Mohammad Rastegari ' *
Hidden in a randomly weighted Wide
ResNet-50, we show that there is a

N ) l/'\’ \ S
W/ ./ v\ A

A neural network Rilll(l()llll_\' initialized A subnetwork
7 which achieves neural network N " of N
good performance




More Magic: someone theoretically proved it &

Proving the Lottery Ticket Hypothesis: Pruning is All You Need

Eran Malach*! Gilad Yehudai 2 Shai Shalev-shwartz! Ohad Shamir 2

Our work aims to give theoretical evidence

Abstract without any training. (Ram
. . . lowing conjecture: a suffic
';‘(];TSI;)ttir}t/ tli];lett hypot(]ifleSIT (Fra?kie agd Ctarblrll(’ network with random ini tltO th ese en ,Olr / Ca/ resu / tS We ,OI’ ove th e
, states that a randomly-initialized networ that achieves competitive a : : :
fof‘taié‘s. a Snllatl'l subnetwork Slthh Fiif“;hWhe“ i motuory, rithout latter conjecture, stated in (Ramanujan et
rained in isolation, can compete wi e per- be viewed as a stroneer ver
formance of the original network. We prove esis. & a/ 201 9) in the case of O’GG,O and shallow
an even stronger hypothesis (as was also con-
jectured in Ramanujan et al., 2019), showing In this work, we prove thlsrz? le;@U:)? 'ii\A“/_QlikS' case
that for every bounded distribution and every tar- of over-parameterized neural networks. Moreover, we dif-
get network with bounded weights, a sufficiently ferentiate between two types of subnetworks: subnetworks
over-parameterized neural network with random where specific weights are removed (weight-subnetworks)
weights contains a subnetwork with roughly the and subnetworks where entire neurons are removed (neuron-
same accuracy as the target network, without any subnetwor kS) First, we show that a ReLLU network of ar-

further training. bitrary depth [ can be approximated by finding a weight-




| everage Supermasks for Continual Learning wortsman et al. 2020]

Supermasks in Superposition

Mitchell Wortsman™ Vivek Ramanujan®* Rosanne Liu  Aniruddha Kembhavi'
University of Washington  Allen Institute for Al ML Collective Allen Institute for Al

Mohammad Rastegari Jason Yosinski Ali Farhadi
University of Washington ML Collective University of Washington
Abstract

We present the Supermasks in Superposition (SupSup) model, capable of sequen-
tially learning thousands of tasks without catastrophic forgetting. Our approach
uses a randomly initialized, fixed base network and for each task finds a subnet-
work (supermask) that achieves good performance. If task identity is given at test
time, the correct subnetwork can be retrieved with minimal memory usage. If not
provided, SupSup can infer the task using gradient-based optimization to find a
linear superposition of learned supermasks which minimizes the output entropy.
In practice we find that a single gradient step is often sufficient to identify the
correct mask, even among 2500 tasks. We also showcase two promising extensions.
First, SupSup models can be trained entirely without task identity information, as
they may detect when they are uncertain about new data and allocate an additional
supermask for the new training distribution. Finally the entire, growing set of
supermasks can be stored in a constant-sized reservoir by implicitly storing them
as attractors in a fixed-sized Hopfield network.




| everage Supermasks for Continual Learning wortsman et al. 2020]

| Inference

O

D D D D D D D D D a %vo wmaximize wodel| can predict

Supermask - task | Superwask - +ask 2  Superwask - task w» V\OWV\ £35\<D confidence task ahg class \abel




What it means for model capacity




4. Train-by-Reconnect (i et al. 2020

Train-by-Reconnect: Decoupling Locations of
Weights from Their Values Random

weights

Yushi Qiu Reiji Suda
Graduate School of Information Science and Technology, The University of Tokyo
{yushi621l, reiji}@is.s.u-tokyo.ac.jp

() : a permutation

Abstract

What makes untrained deep neural networks (DNNs) different from the trained
performant ones? By zooming into the weights in well-trained DNNs, we found
that it is the location of weights that holds most of the information encoded
by the training. Motivated by this observation, we hypothesized that weights
in DNNs trained using stochastic gradient-based methods can be separated into
two dimensions: the location of weights, and their exact values. To assess our S
hypothesis, we propose a novel method called lookahead permutation (LaPerm) to Trained
train DNNs by reconnecting the weights. We empirically demonstrate LaPerm’s weights
versatility while producing extensive evidence to support our hypothesis: when

the initial weights are random and dense, our method demonstrates speed and

performance similar to or better than that of regular optimizers, e.g., Adam. When

the initial weights are random and sparse (many zeros), our method changes the

way neurons connect, achieving accuracy comparable to that of a well-trained

dense network. When the initial weights share a single value, our method finds a

weight agnostic neural network with far-better-than-chance accuracy.




5. Train BN and Only BN [Frankle et al. 2020]

Training BatchNorm and Only BatchNorm:
On the Expressivity of Random Features in CNNs

Jonathan Frankle* David J. Schwab Ari S. Morcos
MIT CSAIL CUNY Graduate Center, ITS Facebook AI Research
jfrankle@mit.edu Facebook Al Research arimorcos@fb.com

dschwab@fb.com

Abstract

Batch normalization (BatchNorm) has become an indispensable tool for training
deep neural networks, yet it is still poorly understood. Although previous work
has typically focused on studying its normalization component, BatchNorm also
adds two per-feature trainable parameters—a coefficient and a bias—whose role
and expressive power remain unclear. To study this question, we investigate the
performance achieved when training only these parameters and freezing all others
at their random initializations. We find that doing so leads to surprisingly high
performance. For example, sufficiently deep ResNets reach 82% (CIFAR-10) and
32% (ImageNet, top-5) accuracy in this configuration, far higher than when training
an equivalent number of randomly chosen parameters elsewhere in the network.
BatchNorm achieves this performance in part by naturally learning to disable
around a third of the random features. Not only do these results highlight the
under-appreciated role of the affine parameters in BatchNorm, but—in a broader
sense—they characterize the expressive power of neural networks constructed
simply by shifting and rescaling random features.




6. Train Perturbations 'Dathathri et al. 2019]

PLUG AND PLAY LANGUAGE MODELS: A SIMPLE
APPROACH TO CONTROLLED TEXT GENERATION

Sumanth Dathathri * Andrea Madotto * Janice Lan Jane Hung
CMS, Caltech HKUST Uber Al Uber Al
Eric Frank Piero Molino Jason Yosinski f Rosanne Liu |
Uber Al Uber Al Uber Al Uber Al

dathathris@gmail.com, amadotto@connect.ust.hk
{janlan, jane.hung, mysterefrank, piero, yosinski, rosanne}(@uber.com

ABSTRACT

Large transformer-based language models (LMs) trained on huge text corpora
have shown unparalleled generation capabilities. However, controlling attributes
of the generated language (e.g. switching topic or sentiment) is difficult without
modifying the model architecture or fine-tuning on attribute-specific data and en-
tailing the significant cost of retraining. We propose a simple alternative: the Plug
and Play Language Model (PPLM) for controllable language generation, which
combines a pretrained LM with one or more simple attribute classifiers that guide
text generation without any further training of the LM. In the canonical scenario
we present, the attribute models are simple classifiers consisting of a user-specified
bag of words or a single learned layer with 100,000 times fewer parameters than
the LM. Sampling entails a forward and backward pass in which gradients from
the attribute model push the LM’s hidden activations and thus guide the gener-
ation. Model samples demonstrate control over a range of topics and sentiment
styles, and extensive automated and human annotated evaluations show attribute
alignment and fluency. PPLMs are flexible in that any combination of differen-
tiable attribute models may be used to steer text generation, which will allow for
diverse and creative applications beyond the examples given in this paper.




6. Train Perturbations 'Dathathri et al. 2019]
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've talked about “weird ways of training NNs™:

* [ndirect encoding (e.g. HyperNetworks)
 Random subspace training (Intrinsic Dimension)
 SuperMasks

* Train by shuffling weight positions

* Train by renormalizing (e.g. BN parameters)

* Train activation perturbations (e.g. PPLM)



e [Dathathri et al. 2019] Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E., Molino, P., Yosinski, J. and Liu, R., 2019. Plug and Play Language
Models: A Simple Approach to Controlled Text Generation. In International Conference on Learning Representations, 2019.

e [Frankle & Carbin, 2019] Frankle, J. and Carbin, M., 2019. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In International
Conference on Learning Representations, 2019.

* [Frankle et al. 2020] Frankle, J., Schwab, D.J. and Morcos, A.S., 2020. Training BatchNorm and Only BatchNorm: On the Expressive Power of
Random Features in CNNs. arXiv preprint arXiv:2003.00152.
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