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Conventionally, efforts in deep learning research wish 
to make neural networks train easier. 

• Smart architectures 
• Optimizers / regularizers 
• Initialization schemes 
• Normalization methods 
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However a line of rather unconventional work focuses 
on training neural networks in rather difficult ways, most 
involving not optimizing in the original weight space. 

I’d like to cover a few of those work that I was fortunate to 
have been closely admiring & directly involved in. 
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1. Indirect encoding [Stanley et al. 2009; Ha et al. 2017]
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A hypernetwork generates the weights for a 
feedforward network.



2. Intrinsic dimension [Li et al. 2018]
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Summary of “Intrinsic Dimension”

● We use this weird way of training networks in a random subspace, with a 
dimension much smaller than that of the original space 

● We found the minimum dimension trainable is a fairly stable metric across a 
family of models for a given dataset 

● It says something about model capacity: as we add more parameters, we 
increase how much the solution set covers the space 

● Model compressibility & Minimum Description Length



3. Supermasks [Zhou et al. 2019; Ramanujan et al. 2019; Wortsman et al. 2020]
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Network Pruning

[Han et al. 2015]



Lottery Ticket Hypothesis [Frankle & Carbin, 2019]



1. Initialize a mask     of value ones. Randomly initialize the parameters        
    of a network                    . 

2. Train the parameters     of the network                     to completion. Denote 
initial weight values as      and final weight values as     . 

3. Mask criterion: Use the mask criterion                             to produce a score 
for each unmasked weight. Set the mask values of weights with the bottom 
p% of score to 0, and keep the remaining mask values at 1. 

4. Mask-1 Action: Rewind weights with mask value 1 back to their initial values 
and allow them to train in subsequent rounds. 

5. Mask-0 Action: Set weights with mask value 0 to 0 and freeze during 
subsequent rounds.

m
w
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f(x; w ⊙ m)

w f(x; w ⊙ m)

M(wi, wf ) = |wf |

Lottery Ticket Algorithm [Frankle & Carbin, 2019]
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Deconstructing Lottery Tickets [Zhou et al. 2019]
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Supermask!

Not trained! (random network)

Curiously Effective Masks at Initialization



•  


•        is the effective weight of the network


•      is a point-wise function that transform a matrix of 
continuous values into binary values


•

Directly training Supermasks

bernoulli sampler
Sigmoid



Directly training Supermasks: Works!



Magic: someone made it work for ImageNet 

Hidden in a randomly weighted Wide 
ResNet-50, we show that there is a 
subnetwork (with random weights) that 
matches the performance of a ResNet-34 
trained on ImageNet. 



More Magic: someone theoretically proved it

Our work aims to give theoretical evidence 
to these empirical results. We prove the 
latter conjecture, stated in (Ramanujan et 
al., 2019), in the case of deep and shallow 
neural networks. 



Leverage Supermasks for Continual Learning [Wortsman et al. 2020]
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What it means for model capacity



4. Train-by-Reconnect [Qiu et al. 2020]



5. Train BN and only BN [Frankle et al. 2020]



6. Train Perturbations [Dathathri et al. 2019]
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I’ve talked about “weird ways of training NNs”: 

• Indirect encoding (e.g. HyperNetworks) 

• Random subspace training (Intrinsic Dimension) 

• SuperMasks 

• Train by shuffling weight positions 

• Train by renormalizing (e.g. BN parameters) 

• Train activation perturbations (e.g. PPLM)
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Conventional ML researcher Unconventional ML researcher
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Being paid to do research Not taking pay to do research
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Cares about: # papers/citations, h-index Cares about: # people I help get into research

Short-term goal: next paper Short-term goal: next person to help
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Ultimate goal: prove individual worth Ultimate goal: American dream for ML research
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anything until I “get there” 
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researcher until they know you better
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We as ML researchers have more capacity than we think. 

Not only can we produce great research, but we are also totally 
capable of making society better and ourselves happier, by simply 
changing our objective function from “individual achievement” to 
“helping people, nurturing society.”  

I’ve run such experiment and presented positive results so you 
don’t have to run it yourself.  

Cite me though! 😊
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