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GENERATIVE MODELS

* Supervised learning: {Xz,yz i—1 regression, classification,
segmentation

* Unsupervised learning: {X; }Z 1 approximate data distribution

pe(x) ~ p*(x)

> Generative models are trained with maximum likelihood:

Z log po(X;) — max



GENERATIVE MODELS

~ Simple density estimation models:
po(z) = N(z|p,X)  or  po()

" Deep likelihood-based generative models:
" Autoregressive models
" Variational Autoencoder

" Normalizing flows



NORMALIZING FLOWS

* Deep generative models based on invertible neural networks

i~pPz X =f_1(Z)

"~ Base distribution Pz is usually Gaussian (0, I)

* We can compute density in the data space exactly via change of
variable formula:

ox

of
p(x) = py(f(x)) - | det (—)

* Fast sampling and density estimation in coupling layers based flows
(RealNVP, Glow, ...)



NORMALIZING FLOWS

N . neural network
Coupling layers:
e.g. ResNet

,
_ Yid = Tid / \
fa,ffl (xida xchange) — (yidy ychange), < : '

Ychange — (xchange + t(xld)) ® eXP(S(CUid))

\

Tractable det Jacobian

Gy _ |, v
ocT — %ﬁ; diag (exp [s (z1:4)] )

(a) Forward propagation (b) Inverse propagation

Dinh et al, Density estimation using RealNVP



NORMALIZING FLOWS

N . neural network
Coupling layers:
e.g. ResNet

.
~ = T / \
faﬂl (xid’ xchange) — (yid) ychange), < Ji '

Ychange — (xchange + t(mld)) ® eXP(S(CUid))

\

~ xissplitinto x;; and x, using masking

hange

Xid
i
— xchange
g — e
{_I:-'

checkerboard squeeze layer channel-wise




NORMALIZING FLOWS

~ Multi-scale architecture: at each scale half the variables are directly
modeled as Gaussians while other half undergo further transformations

Dinh et al, Density estimation using RealNVP



NORMALIZING FLOWS

" Normalizing flows can model complex distributions

* NFs are successfully applied in modeling and inference

Norm. Flow

Kingma et al, Glow: Generative Flow Rezende et al, Variational Inference
with Invertible 1x1 Convolutions with Normalizing Flows



OUT-OF-DISTRIBUTION DETECTION +

* Anomaly detection is important in
safety critical applications: medicine,
autonomous cars, fraud detection
and many more

* Generative models present an
attractive approach, OOD data is
detected by low likelihood




NORMALIZING FLOWS

10

"~ Nalisnick et al. showed that flows sometimes assign higher likelihood

to out-of-distribution data
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RealNVP trained on FashionMNIST

Nalisnick et al, Do Deep Generative Models Know What They Don't Know?
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INDUCTIVE BIASES

\_ J

* Maximum likelihood encourages solutions which concentrate all
mass on training data, i.e. overtfit

"~ The likelihood assignment outside training data will be determined
by inductive biases of the model



WHY NORMALIZING FLOWS FAIL TO DETECT OUT-OF-DISTRIBUTION DATA 13

INDUCTIVE BIASES

would work for

anomaly detection 2
- J

* Maximum likelihood encourages solutions which concentrate all
mass on training data, i.e. overtfit

"~ The likelihood assignment outside training data will be determined
by inductive biases of the model
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INDUCTIVE BIASES

would work for

anomaly detection 2
- J

* Maximum likelihood encourages solutions which concentrate all
mass on training data, i.e. overtfit

"~ The likelihood assignment outside training data will be determined
by inductive biases of the model
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LATENT SPACE STRUCTURE

in-distr .___‘m ']IE.E{EB-E -E'.":."i_!'-.ﬁ.-ﬂrh '-":‘L\'*_ﬁ

-k .':'_ :.. - 'll- : T
O O D : -:lj-. . .-'r.-':. : -:-.':.L . | | m

Input Latent Avg Latent BN Train Input Latent Latent Blue BN Train

There is a direct correspondence between image and latent
representation coordinates, the input shape is often visible in the
latent representation
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INDUCTIVE BIASES OF FLOWS

N . neural network
Coupling layers:

e.g. ResNet

.
_ Yid = Zid / \
faf-fl (xida xchange) — (yid, ychange), < 1 1

Ychange — (xchange + t(xid)) ® eXp(S(xid))

\

* xissplitinto x;,;, and Xchange

using masking

. '—_I'W xchange
g — "
d ] -!:.l

checkerboard squeeze layer channel-wise
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TRANSFORMATIONS OF COUPLING LAYERS

r a
S —1
: : % ..... o i
Affine coupling layer network l i
predicts the scale and shift s 5
which directly model the & ——
masked pixels . - o
'-".. :_a-' :. i i
N B y

(a) Checkerboard (b) Checkerboard, OOD
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TRANSFORMATIONS OF COUPLING LAYERS

Intuitively:
af_l 4 )
logpx (x) =logpz(f(x)) + log |det 5 {f ° !
SR I s SN B Y S o ]
/ dim(a:change)\ l _.Q.
log N'(210,1) + Y s(wia)i s .5
i=1 2 ———
s F
by L R S
The objective wants values s to be Tt A
| . . \_ J \_ J
arge while keeping the norm of z
small: as a results -t is
(a) Checkerboard (b) Checkerboard, OOD

approximating masked input and s
represents the confidence of the
approximation
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TRANSFORMATIONS OF COUPLING LAYERS

_ of !
log px (x) = logpz(f ™ (x)) + log |det gx
/ \ é )
dim(xchange) S —t
g N (=0, 1)+ > s(wia): ‘[f ..... . |
1=1 l e
sl M
£ ———
If —t is an accurate approximation, | | o
x+t will be small and this we can L R >
afford large values for s b b
g J \_ J
Yid = Tid (a) Checkerboard (b) Checkerboard, OOD
Ychange — (xchange + t(mid@Q eXp(S(xid))
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CHANGING INDUCTIVE BIASES: BOTTLENECK

~ We can restrict the capacity of coupling layer network to prevent it from
predicting masked pixels easily for all structured images

FC layers

Y N\

N

ResNet blocks bottleneck of dim l

MNIST
MNIST Train
[0 FashionMNIST Train
[0 FashionMNIST
NotMNIST

12000 —9000 —6000 —3000 000 —9000 —6000 —3000

(a) Baseline (b) 1 =100 (c) I =50 (d) 1=10
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IMAGE EMBEDDINGS

RealNVP trained on images RealNVP trained on embeddings

f_M f_M

SVHN CelebA CIFAR SVHN Embeddings CelebA Embeddings CIFAR Embeddings
—12000 —9000 —6000 —3000 —11000—9000 —7000 —5000 —11000—9000 —7000 —5000 —6000 —2750 500 3750 —1000 500 2000 3500 5000 —1000 500 2000 3500 5000
SVHN SVHN Train ﬁ CIFAR B CIFAR Train 0 CelebA B CelebA Train

The flow trained on image embeddings can detect OOD data
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TAKEAWAYS

" Inductive biases (architectural choices) of generative models determine
where they generalize (i.e. assign high likelihood) and what they
consider out-of-distribution

* Normalizing flow based on coupling layers increase likelihood on all
structured images when trained on one image dataset

* When trained on semantic embeddings, flows can detect anomalies
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CONCLUSION

* See the paper arxiv.org/abs/2006.08545 for more details and
experiments

* PyTorch Code available at github.com/PolinaKirichenko/flows_ood



https://arxiv.org/abs/2006.08545
https://github.com/PolinaKirichenko/flows_ood

Thank youl
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Further Analyses



Distribution of differences to neighbour pixels
predicts Glow likelihood
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Common Local Features Dominate Model Likelihood
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Fully Connected Models Less Correlated

Likelihoods Rank Correlation

Conv Glow Local Glow Dense Glow Conv Glow
Trained on: (CIFAR10) (CIFAR10) (CIFAR10)

CIFAR10 100% 86% 100%
SVHN 96% 90% 97%
TINY 100% 86% 100%

Dense Glow improves Fashion-MNIST vs. MNIST AUC from 15% to 81%!
Unfortunately, does not work as well for CIFAR10



Solutions



Hierarchy of Distributions

Hierarchical View Raw Log Likelihood Log Likelihood
of Distributions Difference

CIFAR10-Glow (AUC: 13%)  (rAR10-Glow (AUC: 95%)
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log(pg(xg))—log(pin(xg)) https://arxiv.org/
T abs/1812.04606

Outlier Loss Loyt = —4 - log(sigmoid(



https://arxiv.org/abs/1812.04606

Log Likelihood Ratio and Outlier Loss

Pin (x)
pg(x)

Log Likelihood Ratio inlier score(x) = log( ) = log(pin(x)) — log(pgy(x))

log(pg (xg))_log(pin(xg))
T

Outlier Loss Loy = —A-log(sigmoid( ))

log(pg(xg))-1og®in(xg))
T

Total Loss L = —-log(pin(x;,)) — A - log(sigmoid( )



'ast Glow-scale contains Semantic
nformation
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X
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More Maximization Examples
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Glow Log Likelihood can be decomposed

X
(3x32x32)

z1
Flow1l
| (6x16x16) Log Likelihood Decomposition
z2
Flow2 — (12x8x8) logp(x) = z c;(x) =210gpz(zi) + log
! i i
Flow3

}

z3
(48x4x4)

dy;
det(ahbq>




Hierarchy of Features

Scales 1 and 2
CIFAR10 AUC: 8.0%
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LLR Method works best for matching models

Setting Glow (in-dist) diff to: PCNN (in-dist) diff to:

In-dist Out-dist None PNG Tiny- Tiny- None PNG Tiny- Tiny-
Glow PCNN Glow PCNN
CIFAR10 98.3 744 100.0 100.0 97/.9 76.8 100.0 100.0
SVHN CIFAR100 97.9 79.5 100.0 100.0 974 81.3 100.0 100.0
LSUN 99.6 96.8 100.0 100.0 994 98.1 100.0 100.0
SVHN 8.8 75.4 93.9 16.6 12.6 82.3 94.8 94.4
CIFAR10 CIFAR100 51.7 57.3 66.8 534 51.7 57.1 57.5 63.5
LSUN 69.3 83.6 89.2 16.8 74.8 87.6 93.6 92.9

Mean 61.3 73.0 85.7 53.2 63.2 76.3 86.2 87.0




Last Scale Best for Raw

CIFAR10 In-distribution (AUC %)

Out-dist Full 16x16 8x8 4x4
Raw 8.8 7.0 135 929
Diff 93.9 84.6 489 83.6
Raw 51.7 50.7 535 60.0
Diff 66.8 55.7 56.3 66.1
Raw 69.3 70.3 56,5 8238
Diff 89.2 63.6 74.0 75.1

SVHN

CIFAR100

LSUN

15



Strong Results without Class Labels

In-dist

CIFAR10

CIFAR100

Setting
Out-dist
SVHN
CIFAR100
LSUN
Mean
SVHN
CIFAR10
LSUN
Mean
Mean

No Class labels

4x4 Diff Difft

96.4
85.4
95.1
92.3
84.5
61.9
34.6
77.0
84.7

98.6
384.5
94.1
92.4
82.2
59.8
82.4
74.8
83.6

99.0
86.8
95.8
93.8
85.4
62.5
85.4
77.8
85.8

OE
75.8

68.5
90.9
78.4

With Class Labels

4x4 Diff Difft

96.1
388.3
95.3
93.3
89.6
67.0
85.7
80.8
87.0

98.6
87.4
94.1
93.4
88.6
64.9
34.3
79.3
86.3

99.1
88.5
96.2
94.6
89.4
65.3
86.3
80.3
87.5

OE
98.4

93.3
97.6
96.4
86.9
75.7
83.4
82.0
89.2

16



Different Metrics Rank Images Differently

CIFAR10 Glow

Raw Log
Likelihood

Difference to
Tiny-Glow

4x4 LL
Contribution

Raw Log
Likelihood

Difference to
Tiny-Glow

4x4 LL
Contribution

SSO| J3IJ3IN0 Y1M

=
~N



Related Work

Likelihood Ratios for Out-of-Distribution Detection — Use in-distribution +
semantic-destroying noise as general distribution

Input complexity and out-of-distribution detection with likelihood-based
generative models — Use PNG as general distribution

BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling —
Investigate different scales of a hierarchical VAE for anomaly detection

18


https://arxiv.org/abs/1906.02845
https://arxiv.org/abs/1909.11480
https://arxiv.org/abs/1902.02102

Takeaways

* Low-level local features dominate likelihood
* Hinders anomaly detection

* Likelihood difference of in-distribution model to general distribution
model improves anomaly detection

* Likelihood contribution of last scale improves anomaly detection
* Open question how to best combine these approaches



Thank You

Code at https://github.com/boschresearch/hierarchical anomaly detection

20


https://github.com/boschresearch/hierarchical_anomaly_detection
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DO DEEP GENERATIVE MODELS KNOW
WHAT THEY DON’T KNOW?

Eric Nalisnick* Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan*
DeepMind
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Glow Model

Glow: Generative Flow
with Invertible 1 x1 Convolutions

Diederik P. Kingma®, Prafulla Dhariwal*
OpenAl, San Francisco

25



Extended Results



Common Local Features Dominate Model Likelihood

E | |

o 6.0 - E -

a e CIFARIO .2 s 6.0 e CIFAR1O > 26.0 ceario]

=45 * SVHN = e« SVHN — * f;” ¢

o = 45 =45 ® SVHN

5 5 5 ,

g 3.0 . 3.0 S 3.0

o4 = A

<[ - e

i 1.5 & 15 & 15

u —

3 0o ] Corr: 1.00 - P Corr: 0.96 - 00 Corr: 0.97

Z 00 15 3.0 45 6.0 <000 15 30 45 6.0 = 00 15 30 45 6.0
NLL Local CIFAR10-Glow [bpd] NLL Local CIFAR10-Glow [bpd] NLL Local SVHN-Glow [bpd]

Rank Correlations between Image Likelihoods/Densities of Glow Models
Conv Glow Trained Local Glow Dense Glow Conv Glow
on: (CIFAR10) (CIFAR10) (CIFAR10)
CIFAR10 100% 86% 100%
SVHN 96% 90% 97%

TINY 100% 86% 100%
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Fully Connected Models Less Correlated

Likelihoods Rank Correlation

Conv Glow Local Glow Dense Glow Conv Glow
Trained on: (CIFAR10) (CIFAR10) (CIFAR10)

CIFAR10 100% 86% 100%
SVHN 96% 90% 97%
TINY 100% 86% 100%

Dense Glow improves Fashion-MNIST vs. MNIST AUC from 15% to 81%!
Unfortunately, does not work as well for CIFAR10

28



More results

In-dist

SVHN

CIFAR10

CIFAR100

Setting
Out-dist

CIFAR10
CIFAR100
LSUN
SVHN
CIFAR100
LSUN
SVHN
CIFAR10
LSUN

Mean

Glow (in-dist) diff to:
PNG

None

98.3
97.9
99.6
8.8
51.7
69.3
10.3
49.2
66.3
61.3

74.4
79.5
96.8
75.4
57.3
83.6
68.4
44.1
77.5
73.0

Tiny-
Glow
100.0
100.0
100.0
93.9
66.8
89.2
87.4
52.8
81.0
85.7

Tiny-
PCNN
100.0

100.0
100.0
16.6
53.4
16.8
18.3
54.2
19.1
53.2

PCNN (in-dist) diff to:

None

97.9
97.4
99.4
12.6
51.7
74.8
13.7
49.1
71.7
63.2

PNG

76.8
81.3
98.1
82.3
57.1
87.6
76.4
44.2
82.7
76.3

Tiny-
Glow
100.0
100.0
100.0
94.8
57.5
93.6
91.3
48.3
90.0
86.2

Tiny-
PCNN
100.0

100.0
100.0
94.4
63.5
92.9
90.0
54.5
87.6
87.0

29



Table S3: Anomaly detection performance for additional OOD datasets CelebA and Tiny-Imagenet.

Conventions as in Table main manuscript.

Setting Unsupervised Supervised
In-dist Out-dist Raw [4x4] Diff Diff Raw [4x4] Diff Diff+
CIFAR10 . CelebA 96.6 (1.2) 96. l_ (1.2) 97.6(0.5) | 96.6(1.9) 96.2(2.1) 97.8(1.0)
Tiny-Imagenet | 90.7 (0.9) 90.6 (0.7) 92.1(0.4) | 91.1(0.8) 91.3(0.9) 92.7(0.4)
CIFAR100 CelebA 80.9 (1.3) 764(2.4) 804 (1.1) | 81.9(54) 79.1(7.2) 81.7(4.7)
Tiny-Imagenet | 77.3(0.5) 77.5(0.5) 79.7(0.3) | 79.5(0.4) 79.7(0.5) 80.6(0.5)

30
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Figure S5: Graphical Overview over Anomaly Detection Results. Markers indicate mean result over
three seeds, error bars indicate standard error of that mean. Type of marker indicates type of anomaly
metric (defined as before and as in Table [S2)). Color indicates supervised or unsupervised setting.
Rows are in-distribution dataset and columns are OOD datasets. Supervised setting outperforms
unsupervised setting, especially on CIFARI10 vs. CIFAR100 and vice versa. Using a general-
distribution model trained with outlier loss on the in-distribution (Diff7) always outperforms general-
distribution model trained without outlier loss (Diff). Relative performance of final-scale method
(4 x 4) compared with log-likelihood-difference methods (Diff and Diff7) varies between dataset
pairs.



Further Results



8 In-dist: CIFAR10 In-dist: CIFAR100
o
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S 40
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> [ inetuned

mn
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L Epoch Epoch

Figure S2: Training Curves Anomaly Detection From Scratch vs. Finetuned. Conventions as in Fig.

53| Glow networks are trained without any outlier loss. AUROC refers to AUROC computed from

our log-likelihood ratio metric using another Glow-network trained on 80 Million Tiny Images. Note
that the finetuned Glow networks outperform the final from-scratch trained Glow networks after less
than 20% of the training epochs. Note that due to different evaluation (not noise-free) and different
subsets used for intermediate results, results in this figures vary from final results in result tables.
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Figure S3: Training Curves CIFAR10/100 and SVHN From Scratch vs. Finetuned. Transparent, thin
lines indicate single-seed runs, solid, think lines indicate means over these runs. Solid horizontal
lines indicate final mean performance of from-scratch trained models. Note that (1) finetuned Glow
networks are better in each epoch; (ii) for CIFAR10/100 the finetuned Glow networks outperform
the final from-scratch trained Glow networks after less than 20% of the training epochs and (iii) for
SVHN, the finetuned Glow network outperforms the final from-scratch-trained Glow network after
about 50% of the training epochs.
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Table S1: Maximum likelihood performance in bits per dimension. Results obtained using single
samples of uniform dequantization noise. Tiny is the Glow network trained on 80 Million Tiny
Images. Retr refers to from-scratch training on the in-distribution dataset, Finet refers to finetuning
aforementeioned Glow network trained on 80 Million Tiny Images. Note the original Glow paper
[12] reached 3.35 bpd on CIFAR-10 with multi-GPU training. The Glow network and training
setup we use is optimized for single-GPU training and not for maximum performance. The public
implementation we originally based our implementation on (and uses the explicit conditioning step

discussed in[ST.3) reaches 3.39 bpd on CIFAR10.

In-dist Tiny Retr Finet

SVHN 2.34 2.07 2.06
CIFAR10 341 340 3.36
CIFAR100 343 343 3.39
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Figure S4: Training Curves Anomaly Detection Finetuned from Own model vs Finetuned from Tiny.
Conventions as in Fig. Finetuned from own model is the same as simply training twice as long on
the in-distribution. At the end of training for CIFAR 100, the model finetuned from Tiny still performs
~6% better on anomaly detection.
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Figure S6: Training Curves Anomaly Detection Margin Loss vs Outlier Loss. AUROC refers to
AUROC computed from our log-likelihood-difference metric using another Glow-network trained on
80 Million Tiny Images. Note Glow networks trained with margin loss experience substantial drops
in anomaly detection performance in later stages of the training.
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Table S4: Binary Classifier Anomaly Detection Results. Wide-ResNet classifier trained on 80 Million
Tiny Images vs in-distribution as binary classification. We use presnet (Vindist|) as our anomaly
metric after training for the AUC computations.

In-dist OO0D AUC
CIFAR-10 SVHN 93
CIFAR-100 89
LSUN 93
CIFAR-100 SVHN 73
CIFAR-10 70
LSUN 89
SVHN CIFAR-10 100
CIFAR-100 100
LSUN 100
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Amplitude Phase Analysis



Imagel Amplitude(Image1l) Phase(Imagel) -> Phase(Image2)

'

Gradually swap phases but keep amplitudes

Image2 Amplitude(Image2) Phase(lmage2) -> Phase(Imagel)
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Figure 4a shows the original image a[m,n], Figure 4b the magnitude in a scaled
form as log(|4(Q.,%¥)|), and Figure 4c the phase @(Q.V).

Figure 4a Figure 4b
Original log(|A(Q2.'Y)))

Both the magnitude and the phase functions are necessary for the complete
reconstruction of an image from its Fourier transform. Figure 5a shows what
happens when Figure 4a is restored solely on the basis of the magnitude
information and Figure 5b shows what happens when Figure 4a is restored solely
on the basis of the phase information.

https://dsp.stackexchange.com/
a/9092

Figure Sa Figure 5b
o(QY¥Y)=0 |A(Q.Y)| = constant

Neither the magnitude information nor the phase information is sufficient to
restore the image. The magnitude—only image (Figure 5a) is unrecognizable and
has severe dynamic range problems. The phase-only image (Figure 5b) is barely
recognizable, that is, severely degraded in quality. 41


https://dsp.stackexchange.com/a/9092

Amplitude Dominates Likelihood

Result

Result

Corr>0.8

Corr <0.05
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Reconstructed image using
magnitude only
(1.e., magnitude determines the

contribution of each component!)

Reconstructed image using
phase onl

(1.e., phase determines

which components are present!)
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