
Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer

rohananil @ google dot com
March 12, 2021 at Deep Learning Classics and Trends

Scalable Second Order Optimization
for Deep Learning
Preprint: https://arxiv.org/abs/2002.09018

@_arohan_

Distributed Implementation

https://arxiv.org/search/cs?searchtype=author&query=Anil%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Gupta%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Koren%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Regan%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Singer%2C+Y
https://arxiv.org/abs/2002.09018
https://twitter.com/_arohan_
https://github.com/google-research/google-research/tree/master/scalable_shampoo

Make neural network training efficient at scale

Make neural network training efficient at scale
This work: making Shampoo a second order method work in practice

Make neural network training efficient at scale
This work: making Shampoo a second order method work in practice

Several other approaches: sparsification, variance reduction, momentum based methods,
meta-optimization, exponentiated gradients/multiplicative updates, target prop etc

Why?
Improvements from first order methods have
reached a plateau
Both in terms of steps to convergence, and implementation performance

Why is it called Shampoo?

Because it does preconditioning!

Credit: Roy Frostig who suggested the name.

Preconditioning

For t=1,2,..T:

Ht:
● Newton
● Natural Gradient
● Full matrix AdaGrad, ...

Geometrically they scale and rotate gradients

Whereas first order methods only scale gradients.

"Adaptive Subgradient Methods for Online Learning and Stochastic Optimization", Duchi, Hazan, Singer'10

● Time step 1
● Compute outer product of gradient vectors

Full Matrix Adagrad Preconditioner

"Adaptive Bound Optimization for Online Convex Optimization", H. Brendan McMahan, Matthew Streeter'10

Full Matrix Adagrad Preconditioner

Full Matrix Adagrad Preconditioner

Full Matrix Adagrad Preconditioner

"Adaptive Subgradient Methods for Online Learning and Stochastic Optimization", Duchi, Hazan, Singer'10

"Adaptive Bound Optimization for Online Convex Optimization", H. Brendan McMahan, Matthew Streeter'10

7.3M

entries:
7.3M x 7.3M
= 53 trillion weights

A fully connected layer

3584

2048
Flatten

Full Matrix Adagrad Preconditioner

Diagonal AdaGradFull Matrix Adagrad Preconditioner

Variants Used in practice!

Memory: O(mn)
Computation: O(mn)

Computational and Memory costs

Eg: Fully connected layer: [m, n] Memory: O((mn)2)
Computation: O((mn)3)

Infeasible!
(for scale of models we train)

● Brings back correlations between gradients of parameters while being almost as

efficient as diagonal AdaGrad?

● Cheaper in memory than diagonal AdaGrad?

Is there something in between?

Diagonal AdaGradFull Matrix Adagrad

? ?

Shampoo Diagonal AdaGradFull Matrix Adagrad SM3

Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization
John Duchi, Elad Hazan, Yoram Singer'10

1. Shampoo: Preconditioned
Stochastic Tensor Optimization
Vineet Gupta, Tomer Koren, Yoram Singer'18

2. Scalable Second Order
Optimization for Deep
Learning
Rohan Anil, Vineet Gupta, Tomer Koren,
Kevin Regan, Yoram Singer'20

Memory Efficient Adaptive
Optimization
Rohan Anil, Vineet Gupta, Tomer Koren,
Yoram Singer', 19

3. Disentangling Adaptive
Gradient Methods from
Learning Rates
Naman Agarwal, Rohan Anil, Elad Hazan,
Tomer Koren, Cyril Zhang'20

Adaptive Bound Optimization for Online
Convex Optimization
H. Brendan McMahan, Matthew Streeter'10

+

Shampoo Diagonal AdaGradFull Matrix Adagrad SM3

Computational and Memory costs

Eg: Fully connected layer: [m, n]

Memory: O((mn)2)
Computation: O((mn)3)

Memory: O(m2 + n2)
Computation: O(m3 + n3)

Memory: O(mn)
Computation: O(mn)

Memory: O(m + n)
Computation: O(mn)

Infeasible!

Sublinear!

(for scale of models we train)

● First approximation is to treat each layer independently (block diagonal)

● Use smaller matrices (of statistics) whose Kronecker product approximates the

full matrix AdaGrad statistics.

Shampoo = approx version of Full Matrix AdaGrad

Simple example: 2D Tensors (fully connected)
Parameters of layer 1:

Gradient tensor:

Shampoo statistics:

Full matrix AdaGrad statistics:

Simple example: 2D Tensors (fully connected)
Parameters of layer 1:

Gradient tensor:

Shampoo statistics:

Full matrix AdaGrad statistics:

jax.grad()
tf.gradients()

Simple example: 2D Tensors (fully connected)
Parameters of layer 1:

Gradient tensor:

Shampoo statistics:

Full matrix AdaGrad statistics:

Let G = gradient.

L = L + G @ G.T
R = R + G.T @ G

Simple example: 2D Tensors (fully connected)
Parameters of layer 1:

Gradient tensor:

Shampoo statistics:

Full matrix AdaGrad statistics:

Let G be gradient
g = reshape(G, [-1])
H = H + g @ g.T

Simple example: 2D Tensors (fully connected)
Parameters of layer 1:

Gradient tensor:

Shampoo statistics:

Full matrix AdaGrad statistics:

BA

Sketch of proof (Gupta, Koren, Singer, 2018)
SVD: in vectorized form:

Sketch of proof (Gupta, Koren, Singer, 2018)
SVD: in vectorized form:

http://www.mit.edu/~ssi/assets/teaching/fa16/linalg.pdf

Sketch of proof (Gupta, Koren, Singer, 2018)
SVD: in vectorized form:

}
Sum of vectors

Sketch of proof (Gupta, Koren, Singer, 2018)
SVD: in vectorized form:

}
Sum of vectors

Scalars: (a + b + c) (a + b + c) <= 3 (a2 + b2 + c2)

Sketch of proof (Gupta, Koren, Singer, 2018)
SVD: in vectorized form:

}
Sum of vectors

Since,

Similarly, for Rt

Sketch of Update Rule for 2D Tensors

Compute update:

Update statistics: Let G = gradient.

L = L + G @ G.T
R = R + G.T @ G

W = W - lr * invp(L, 4) @ G @ invp(R, 4)

invp(matrix, p) = inverse pth root of matrix

A comparison with K-FAC
(Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016)

A comparison with K-FAC
(Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016)

Gradient outer product!

A comparison with K-FAC
(Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016)

Chain rule

// x = [1, M], s = [1, N]
// W = [M, N], G = [M, N]

x @ W = s

Loss = f(s)

G = x.T @ grad(Loss, s)

// Express the following as:

// x ⊗ grad(Loss, s)
g = reshape(G, [-1])

A comparison with K-FAC
(Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016)

// Express the following as:

// x ⊗ grad(Loss, s)
g = reshape(G, [-1])

Sum over np.outer(g, g)

Rearrange

https://en.wikipedia.org/wiki/Kronecker_product#Relations_to_other_matrix_operations

A comparison with K-FAC
(Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016)

// x = [1, M], s = [1, N]
// W = [M, N], G = [M, N]

x @ W = s

Loss = f(s)

G = x.T @ grad(Loss, s)

// K-FAC Statistics `D` and `X`
D = grad(Loss, s).T @ grad(Loss, s)
X = x.T @ x

Shampoo update rule

Compute update:

Update statistics:

● This exposition is to show their similarity in construction (when batch =1)
● Differences based on choices such as

○ empirical fisher or fisher
○ moving averages vs sum
○ inverse exponents (1/2 for Full Matrix AdaGrad, 1 for Online Newton Step)

● Shampoo always uses the mini-batch gradient in our experiments.
● Another key difference is that Shampoo construction is agnostic to layer types.

Convert one to another

https://arxiv.org/pdf/1905.12558.pdf

What do preconditioners look like?

● There appears to be structure in the preconditioners. Snapshot of the preconditioner from the Transformers
for language translation task.

● We notice ~30% the preconditioned gradient changes sign.

@ @GradientPreconditioned
Gradient =

Related work: What is SM3?
1. A sub-linear memory optimizer. Useful training models under a memory constraint (say larger models) Paper

2. Think of it as the diagonals of Shampoo

3. SM3 is a tighter estimate than what can be found via Kronecker product of diagonals of Shampoo, for
estimating the diagonal entries of Full Matrix AdaGrad.

https://proceedings.neurips.cc/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf

Inverse Pth Roots of ill-conditioned matrices (M)
Rule of thumb (Overton, 2001): Computing inverse pth root loses log

2
(1/p 𝛋(M)) bits of precision.

𝛋(M) = |𝝺
max

| / |𝝺
min

|

● A condition number of 106 loses 19 bits of precision; left with 4 bits in single precision fp32
for inverse 4th root

Float 32

Float 64

Inverse Pth Roots of ill-conditioned matrices (M)

Fast matrix inverse pth roots

Option a: Use classical Newton's method:

However, numerically unstable and requires certain assumptions on eigenvalues of A

Simple modification to form a stable iteration (Iannazzo et al):

} Coupled iterations

code

https://github.com/google-research/google-research/blob/master/scalable_shampoo/jax/shampoo.py#L343

Neural Network accelerators prefer lower precision

● For good reasons - higher precision acceleration is expensive.

● Making a second order method work at scale for neural network
training is precisely (no pun intended) a major part of our work,
other part was the details around what we now call grafting,
numerics..

Preconditioning at Large Scale Settings

● Heterogeneous compute: Make use of the CPUs attached to
the accelerator to compute inverse pth roots

● Pipeline the computation with the training steps.

Results
Translation with a Transformer: English to French

● Standard WMT'14 translation dataset

○ 36.3M sentence pairs

● Transformer: 93.3M parameters

● 32 cores of TPU-v3

○ Batch size: 1536

● 1.95x fewer steps
● 40% less wallclock time

● Standard WMT'14 translation dataset

○ 36.3M sentence pairs

● Transformer Big: 340M parameters

● 32 cores of TPU-v3

○ Batch size: 1536

● 2x fewer steps
● 41% less wallclock time

DLRM:
Criteo pCTR prediction task

● Shampoo reaches a target AUC of 80.25%

in half as many steps with

preconditioning embedding layers

improving the results, and achieves a new

state-of-the-art AUC of 80.56%;

It depends

● For a relatively large batch size, each gradient step

makes much larger progress which seem to require

computing preconditioners to be computed more

frequently.

● For smaller batch sizes, which is true for majority of NLP
pipelines, we expect we can tolerate large delays. This is

what we see in one example (being tolerant to delays

upto 1200 steps)

How often to run preconditioning?

Preconditioner computation run every N steps
for a Transformer for Machine Translation

Step time for a Transformer model

Highly optimized

Increasing batch
sizes reduces
this cost

Second order methods: Deep Autoencoder Task

● Based on code from K-BFGS Pytorch implementation.
● Shampoo seems to work just as well others, except in FACES task where K-FAC is better.
● Shampoo only relies on the gradient information, and the shape of the layer

○ No per example gradients required and agnostic to layer types (batch norm, convolution, ..)

https://github.com/renyiryry/kbfgs_neurips2020_public

Growth of model size in NLP

● Model size increase from:
○ Increasing the number of layers (stacking)
○ Or increasing layer width

46

Model Number of parameters

Transformer (translation) Chen et al 2018 375.4M

BERT (language model) Devlin et al 2018 340M

GPT-2 Radford et al, 2019 1.5B

GPT-3 Brown et al, 2020 175B

Memory: O(m
2 + n2)

Computation: O(m
3 + n3)

Preconditioning extremely large layers

47

Embedding layers (a very large rectangular layer)

1. Medium sized embedding layers, make use of only the smaller preconditioner

2. Very large embedding layer, exploit sparsity, compute gradient with respect to

the lookup, and use that to compute the preconditioner.

Shampoo on all layers vs excluding embedding/softmax layers on a
Transformer for Machine Translation

Shampoo on all layers vs exclude embedding layers on a
Transformer for DLRM Recommendation Model

Preconditioning extremely large layers

48

● W: [24K, 24K] fully connected layer,

compute preconditioners for: [1024,

1024]. Reduce computational costs!

● We use a block size of 128x128 for

ResNet-50 training (shown later)

● We also reshape gradients.

○ [1, 3, 3, 1024, 1024] -> [9, 1024,

1024]
Shampoo with different blocking configuration on

Transformer for Machine Translation

Key: Learning rate schedules
● Single most important factor with first order optimization methods
● Confounding variable

○ some provide implicit decay 1/sqrt(T)
○ others have constant step size and requires external schedule

● We studied this on wide range of Direction/Magnitude combinations:
○ "Disentangling Adaptive Gradient Methods from Learning Rates", Naman Agarwal, Rohan Anil, Elad Hazan,

Tomer Koren, Cyril Zhang, https://arxiv.org/pdf/2002.11803.pdf

Idea:

https://arxiv.org/pdf/2002.11803.pdf

Is your Optimizer 1 better than Optimizer 2?
● Try grafting Optimizer 1's layerwise update magnitude onto Optimizer 2 and retune.
● Generally we see following

○ Optimizer that didn't work on a problem, magically works now
○ Allows us to bootstrap on a new problem that is heavily hyperparameter tuned.

● Shampoo chooses to graft the magnitude from SGD or AdaGrad. Both are cheap to
compute. Thus, Shampoo is only used for computing the direction of the update.

code

https://github.com/google-research/google-research/blob/master/scalable_shampoo/jax/shampoo.py#L765

Alternate design choice: Emulating higher
precision on accelerators

● Higher precision can be emulated using bfloat16 numerics.
a. G. Henry, P. T. P. Tang, and A. Heinecke. Leveraging the bfloat16 artificial intelligence datatype

for higher-precision computations. In 2019 IEEE 26th Symposium on Computer Arithmetic
(ARITH), pages 69–76. IEEE, 2019.

■ https://arxiv.org/abs/1904.06376

● Which architecture to use? Tradeoffs!
a. Communication overhead between CPU <-> Accelerator
b. Number of preconditioners: Parallelism available on CPU vs Accelerator
c. Staleness tolerance of the preconditioner (large batch vs small batch)
d. How long does the training step take (without including the preconditioner

computation)

https://arxiv.org/abs/1904.06376

Fastest
ResNet-50
training at
large batch sizes

Code is available (with more details) ● Batch size: 32,768
● Same benchmarking hardware
● Blocked preconditioning (128x128 blocks)
● Runs inverse computation every step!

https://github.com/google-research/google-research/tree/master/scalable_shampoo

● Innovations in compiler or runtime stack that can make it easy to write efficient
heterogeneous pipelined computations.

● Ways to exploit parallelism thats available in the optimizer that doesn't add too
much code complexity, making it easy to integrate to rest of the training
pipeline.

● Second order methods discussed here all rely on using Symmetric Matrix
Multiplies in many of the operations. (a) save half the memory by storing upper
triangular matrix efficiently (b) matrix multiplies of symmetric matrices can be
optimized

● ML libraries with linear algebra routines that can run on accelerators.
● Mixed precision algorithms for inverse roots, faster variants of higher precision

emulation can all reduce the computational complexity of inverse roots.

Concluding remarks

Thank you!
https://arxiv.org/abs/2002.09018

Feels like we are just getting started with this stuff!

Please email me (rohananil at google dot com) as for further

questions or collaborations.

Google Research, Brain Team

@misc{anil2021scalable,
 title={Scalable Second Order Optimization for Deep Learning},
 author={Rohan Anil and Vineet Gupta and Tomer Koren and Kevin Regan and Yoram Singer},
 year={2021},
 eprint={2002.09018},
 archivePrefix={arXiv},
 primaryClass={cs.LG}
}

https://arxiv.org/abs/2002.09018

1. Inverse of Kronecker Product

2. Mixed product property

3. Matrix Multiply:

Kronecker product rules:
from Matrix Cookbook

https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html

