Paper Reading @ Deep Learning: Classics and Trends 🗴 ML Collective

Exploring Simple Siamese Representation Learning (and Beyond)

Xinlei Chen

Kaiming He

facebook Artificial Intelligence Research

Self-/Unsupervised Representation Learning

- Goal: train useful representations from unlabeled data
- Trending topic

What Happened: Many New Frameworks

Common Theme: Siamese Networks

• Supervised learning:

• *(these)* Self-supervised learning:

Well, Not Quite..

- Undesired *trivial* solution exist:
 - Predicting constant (C) for everything, representation collapses

• Countering strategies?

Contrastive Learning

- Explicitly requires dissimilarity for views from different images
 - Still requires similarity for views from
 - So, predicting constant is no longer optimal
- Popular loss function:
 - InfoNCE
 - $-\log \frac{\exp(p \cdot p'/\tau)}{\exp(p \cdot p'/\tau) + \sum_{n \in \mathcal{N}} \exp(p \cdot n/\tau)}$
 - $\ensuremath{\mathcal{N}}$ is the set of views from other images as negatives
 - τ is a temperature parameter

Contrastive Learning

- Drawback of InfoNCE:
 - Usually requires a sufficiently large # of negatives for good performance
- In practice:
 - SimCLR uses a large batch size (4096) to provide negatives within batch
 - Requires multi-node training (>>8 V100 GPUs)
 - MoCo uses a momentum queue to store negatives
 - It *decouples* batch size from negative set size
 - Additional memory overhead, and implementation complexity

Other strategies

- Balanced online clustering (SwAV)
 - A cluster-center based output representation, p is used to pick center
 - Key: making sure that cluster sizes are balanced (Sinkhorn-Knopp)
 - Constant solution is less likely because otherwise all points are assigned to a singular cluster

• BYOL

- Introduces an additional MLP (predictor), and uses momentum encoder
 - Momentum encoder
 - Exponential moving average (EMA) of base encoder weights
 - So, weights are not updated by gradients
 - But need to maintain two copies of weights

All These are Rich & Fancy..

Can a Simple Siamese Network just Work?

Yes, SimSiam!

- We show it indeed can and propose SimSiam
- Cuts core components from existing frameworks
 - SimCLR w/o negatives
 - SwAV w/o online clustering
 - BYOL *w/o* momentum encoder
 - MoCo w/o negatives or momentum encoder

Summary of Different Siamese Architectures

PyTorch-like Code for SimSiam

Algorithm 1 SimSiam Pseudocode, PyTorch-like

```
• Notes:
```

```
# f: backbone + projection mlp
# h: prediction mlp
for x in loader: # load a minibatch x with n samples
   x1, x2 = aug(x), aug(x) # random augmentation
   z1, z2 = f(x1), f(x2) # projections, n-by-d
  p1, p2 = h(z1), h(z2) # predictions, n-by-d
  L = D(p1, z2)/2 + D(p2, z1)/2 \# loss
  L.backward() # back-propagate
   update(f, h) # SGD update
def D(p, z): # negative cosine similarity
   z = z.detach() # stop gradient
   p = normalize(p, dim=1) # l2-normalize
   z = normalize(z, dim=1) # l2-normalize
   return -(p*z).sum(dim=1).mean()
```

- We use l_2 normalized cosine similarity by default
- Symmetrized loss
- Gradient is only back propagated through predictor
 - Stop-grad on other

Empirical Study

- Baseline settings:
 - ResNet-50 + 3-layer projector MLP as the default encoder
 - Projector MLP is a very helpful trick from SimCLR
 - Sync BatchNorm
 - Predictor MLP:
 - Bottleneck structure, with smaller hidden dimension (512) and larger input/output dimensions
 - Pre-training: SGD + momentum as the default optimizer
 - 512 batch size, fit in 8 GPUs
 - 0.05 base learning rate (follow linear scaling rule with base batch size 256)
 - 100-epoch pre-training, for analysis
 - Evaluation: linear classifier on top of frozen ResNet pool-5 features

Stop-Grad is Crucial for SimSiam

top-1

67.7±0.1

- Without it, representation collapses
 - Implicit for momentum encoder

setting

w/ stop-grad

Predictor is Important

• Tried different settings:

🕨 similarity <

stop-grad

encoder f

 $\mathbf{A} x_2$

predictor h

encoder f

• Predictor **can** be removed and maintain reasonable performance with proper designs

Losses

- Cosine vs. soft-max cross-entropy
 - Can work out-of-box
 - Relates to SwAV that employs a similar loss
- Symmetrized vs. not
 - Symmetrized is better
 - Likely because it trains "longer"
 - SimSiam has advantage over BYOL:
 - Does not need to forward again on the momentum encoder

setting	top-1
cosine	68.1
cross-entropy	63.2

setting	top-1
symmetrized	68.1
asymmetric	64.8
asymmetric, 2x	67.3

Batch Normalization

- Batch normalization is required for SimSiam
 - SyncBN on each view separately
 - Weight decay applied to BN parameters (different from BYOL, SimCLR)
- Analysis of BN on MLPs

case	proj. hidden	proj. output	pred. hidden	pred. output	top-1
none					34.6
hidden-only					67.4
default					68.1
all					unstable

Analysis on Other Basic Settings

- Batch size
 - Linearly scaled learning rates

	64	128	256	512	1024	2048	4096
top-1	66.1	67.3	68.1	68.1	68.0	67.9	64.0

- Learning rate & weight decay:
 - Again, relatively robust

The Role of Stop-Grad

- Hypothesis
 - Provides a different trajectory that alternates between optimizing two sets of variables:
 - θ , network parameters
 - η , hidden representation for an image x, indexed by x
 - Objective function:
 - $L(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \left[\left\| \mathcal{F}_{\theta} (\mathcal{T}(x)) \eta_x \right\|_2^2 \right]$
 - \mathcal{T} stands for transformations, or augmentations to the input image

The Role of Stop-Grad

- Optimization for $L(\theta, \eta) = \mathbb{E}_{x, \mathcal{T}} \left[\left\| \mathcal{F}_{\theta} (\mathcal{T}(x)) \eta_x \right\|_2^2 \right]$
 - General alternative optimization:
 - Fix η , θ can be optimized with normal gradient decent
 - Fix θ , η can be updated with the expectation $\mathbb{E}_{\mathcal{T}}[\mathcal{F}_{\theta}(\mathcal{T}(x))]$ over transformations
 - SimSiam: One-step alternation:
 - θ is updated with one-step of gradient compute
 - η is updated with one sample of \mathcal{T} only $\mathcal{F}_{\theta}(\mathcal{T}(x))$
- Hypothesis of the predictor
 - Fill in the gap between single-sample and expectation

Proof-of-Concept 1

- Multi-step alternation:
 - Update θ multiple times (with SGD) before updating η again

	1-step	10-step	100-step	1-epoch
top-1	68.1	68.7	68.9	67.0

- Has a "momentum encoder" effect that uses predictions from previous weights
- Suggest alternating optimization is a valid formulation

Proof-of-Concept 2

- Remove predictor
 - Replace it with a *moving average* of previous $\mathcal{F}_{\theta}(\mathcal{T}(x))$
 - This is to approximate the expectation $\mathbb{E}_{\mathcal{T}}[\mathcal{F}_{\theta}(\mathcal{T}(x))]$

setting	top-1
default, w/ predictor	68.1
w/o predictor	0.1
w/o predictor, w/ moving average	55.0

• Supportive of the hypothesis that predictor is related to expectations

Comparisons to Others, ImageNet

method	batch size	negative pairs	momentum encoder	100-ер	200-ер	400-ep	800-ep
SimCLR	4096			66.5	68.3	69.8	70.4
MoCo	256			67.4	69.9	71.0	72.2
BYOL	4096			66.5	70.6	73.2	74.3
SwAV	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

• SimSiam is batch size friendly, momentum encoder free, and competitive

Comparisons to Others, VOC Detection

Pre-train	AP50	AP75	AP
Supervised	74.4	42.4	42.7
SimCLR	75.9	46.8	50.1
MoCo	77.1	48.5	52.5
BYOL	77.1	47.0	49.9
SwAV	75.5	46.5	49.6
SimSiam (Optimal)	77.3	48.5	52.5

• All methods generally perform well, and *outperform* ImageNet supervised pre-training

Are Siamese Networks the Bare Minimum?

- Siamese network is a natural and effective tool to learn invariance
 - It means two views of the same concept should *learn* to produce the same output with *data-driven* pre-training
 - While easy invariance like "*translation*" can be baked into "*convolutions*" as inductive biases, more complex transformations (e.g., color, scale, rotation) are harder to design the counterparts
 - If such invariance is an integral part of good visual representations, Siamese networks at least serves as a strong baseline

The Beyond: Vision Transformer + SSL

- Vision Transformer (ViT)
 - Inductive biases are less important, or even hurting given enough data
 - Translation invariance is still inherent with convolution-based encoders, which can be learned via Siamese networks
- Natural to explore recent selfsupervised learning frameworks with ViT-based encoders

ViT Observation 1

• Existing SSL frameworks generally transfer **well** to ViT and yield reasonable results

- However, they behave differently in different backbones
 - Contrastive learning-based methods have an edge on ViT

ViT Observation 2

- Large batch size, large lr training is more challenging for ViT
 - "Dips": instability influences training
 - Indicating training is only "partially" successful, and "partially" failed
 - LAMB does not fix the issue

Thanks! Questions?

- Take-aways
 - Simple Siamese networks can work alone without (1) negatives; (2) large batches; (3) momentum encoders
 - With current SimSiam design, stop-gradient operation is crucial, suggesting an underlying alternative optimization trajectory
 - Siamese networks are a general and powerful tool to learn invariance with minimum inductive bias, and transfer well to other backbones