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Reinforcement Learning is powerful,
but training needs a lot of data.
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Robotic Manipulation Tasks

Solving rubik’s cube with robot hand

The same RL control policy trained only in
simulation can work in the real physical
robot.

Object rearrangement on the tabletop

A single goal-conditioned policy can solve
many manipulation tasks involving unseen
arrangement and unseen objects.



Motivation

e Training a single goal-conditioned policy
e Solving any robotic manipulation task in an environment

initial state goal state

Task: Initial state — Goal state

Robotic manipulation environment:
one UR robot + gripper + table surface
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Approach

e Goal: One policy for all tasks

o Training on a large training distribution (initial + goal states)
o Testing on unseen holdout tasks

zero-shot generalization
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Approach
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Approach

Training
distribution

goal state
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Ap proaCh zero-shot generalization

holdout task 1 holdout task 2

Training
distribution holdout task 3 holdout task 4

holdout task 5
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Asymmetric Self-play for Robotics Manipulation

e Learning to generate goals + Learning to solve them:
o Train two policies (Alice, Bob) for the same robotic hardware

-
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Initial state Initial state + Goal

-

Alice: Goal generation Bob: Goal solving



Asymmetric Self-play for Robotics Manipulation

initial state distribution
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Asymmetric Self-play for Robotics Manipulation

initial state distribution
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Bob is a goal-conditioned policy



Asymmetric Self-play for Robotics Manipulation

initial state distribution
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Asymmetric Self-play for Robotics Manipulation

o, Incentivized to generate challenging goals
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Asymmetric Self-play for Robotics Manipulation

last state — new initial state (x5)

Each episode contains
5 goals at maximum.
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Alice Behavioral Cloning (ABC)
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Alice Behavioral Cloning (ABC)
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Alice Behavioral Cloning (ABC)

For Bob:
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Stabilizing Alice Behavioral Cloning (ABC)

e Demonstration filtering:
o Collect demonstration only for failed goal
e PPO (schuman et al., 2017)-Style clipping:

o Prevent drastic policy change

Lvc = —E(s,.9,,00)eDpc 108 TB(at|St,9¢50)  Naive BC loss
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Block Environment

e [1, 2] blocks
e State policy

o  Current position & rotation of blocks
o Target position & rotation of blocks
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Evaluation: Skills to learn in the block environment

Pushing Flipping Picking up Stacking
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Transparent blocks mark the goal state.



Generalize to unseen goals without manual curricula

e PPO (schumanetal, 2017) baseline without curriculum fails to learn
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Generalize to unseen goals without manual curricula

e PPO (schuman etal., 2017) baseline completely fails to learn goal distance ratio

, : L . oal rotation weight
e Domain knowledge-based manual curriculum is insufficient grobability of piclg-and-place

probability of stacking
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Generalize to unseen goals without manual curricula

e PPO (schumanetal, 2017) baseline completely fails to learn
e Domain knowledge-based manual curriculum is insufficient
e Asymmetric self-play zero-shot generalizes to all tasks
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Discovery of Novel Goals / Solutions

Novel Goals Novel Solutions



@OpenAI

Discovery of Novel Goals / Solutions

Novel Goals Novel Solutions
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Ablation: ABC is critical

@ ABC Full setup with ABC

@ NoABC No behavioral cloning loss in Bob's training

Pick-and-place

A Vie

1SN
o

Success rate (%)

"
bl \‘

Stack

0 5 10 15 20 25 30 O 5 10 15 20 » 30 O 5 10 15

Tfainiﬁg S/tépsu (x]OO)



Ablation: ABC is critical

With ABC
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Ablation: ABC is critical

Full setup with ABC

Include all trajectories from Alice no matter Bob fails on this goal or not.

Flip Pick-and-place Stack
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Ablation: ABC is critical

Full setup with ABC

No PPO-style loss clipping in ABC loss

Pick-and-place

Success rate (%)
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ShapeNet Environment

e [1, 10] objects from ShapeNet (Chang et al., 2015)

e Observation space: State + Vision
o  Current position & rotation of blocks
o Target position & rotation of blocks
o Images from front and wrist cameras
o Target front-camera image
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Holdout tasks with unseen objects

Table setting Mini chess Rainbow Ball-capture Tangram
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Zero-shot Generalization

Check out more videos at

https://robotics-self-play.qithub.io/



https://robotics-self-play.github.io/
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Zero-shot generalization
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Zero-shot generalization

Delicate handling of
rolling objects and
lifting skills
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Zero-shot generalization
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Zero-shot generalization
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Conclusion

Asymmetric self-play can:

1. Train a policy that can zero-shot generalize to many unseen robotic
manipulation tasks.

2. Alleviate the importance of manual curriculum.

3. Alice Behavior Cloning (ABC) is crucial.
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Announce: robogym

https://github.com/openai/robogym

A simulation framework that uses OpenAl gym and
MuJoCo simulator, including two environments: (1)
in-hand manipulation with Rubik’s cube; (2) table-top 2 y: d 4 .
rearrange with one robot arm + gripper..
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https://github.com/openai/robogym
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Thank you!

arxiv.org/abs/2101.04882

& lilianweng.github.io/lil-lo


https://lilianweng.github.io/lil-log/

