
Deep Learning: Classics and Trends

Bootstrap Your Own Latent:
A new approach to self-supervised learning

Jean-Bastien Grill*, Florian Strub*, Florent Altché*, Corentin Tallec*, Pierre H. Richemond*
 Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad 

Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko



1 Self-Supervised 
Learning



Computer Vision Goal

Dogdog Classification

Segmentation

Depth estimation

Object detection
head

tail

dog

Model

Image



Motivation
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2 Method



Intuition: Two different views (augmentations) of the 
same picture should be predictive of each other.

A view of a dog is still a dog, i.e. semantic information is invariant to transformations.

Figure from SimCLR1

1 SimCLR: Chen et al., A simple framework for contrastive learning of visual representations. ICML. 2020
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Key ingredients:

BYOL’s highlight

● Image transformations.

● Additional predictor on top of online network.

● Target network. 

Interest of the method:

● Simple training procedure.

● No negative examples.

● Work at the embedding level, e.g. no-pseudo labels.



3 Performance



Step 1: Train a “representation” on ImageNet  
without  any labels. 

Linear Evaluation Protocol on ImageNet

Step 2: On top of the frozen representation, train a 
linear classifier on ImageNet with Iabel information.
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Linear Evaluation Performance on ImageNet

Note: these supervised 
baselines are from 
SimCLR (Chen & Hinton, 
ICML 2020)



Linear Evaluation Performance on ImageNet

Note: these supervised 
baselines are from 
SimCLR (Chen & Hinton, 
ICML 2020)

CPCv2: van den Oord et al., Representation learning with 
contrastive predictive coding. 2018

AMDIM: Bachman et al., Learning representations by maximizing 
mutual information across views.  2019

CMC: Tian et al.,Contrastive multiview coding. 2019.
MoCo: He et al., Momentum contrast for unsupervised visual 

representation learning. 2019
InfoMin: Tian et al., What makes for good views for contrastive 

learning. 2020
MoCov2: Jain et al., Improved baselines with momentum 

contrastive learning. 2020
SimCLR: Chen et al., A simple framework for contrastive learning 

of visual representations. 2020
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Transfer Results

Semantic segmentation and object detection: 

Depth estimation: 

head
tail

dog

1 He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR. 2020. 
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Further comparison with SimCLR

BYOL outperforms other self-supervised learning methods on the following benchmarks:

● Semi-supervised learning on ImageNet
● Fine-tuning on small classification datasets (such as CIFAR or Flowers)
● Transfer tasks when pretraining on Places365 instead of ImageNet

BYOL vs. Contrastive methods:

● BYOL is less sensitive to the choice of image transformations 
● BYOL is more robust to smaller batch sizes



4 Building intuitions



Private & ConfidentialIs BYOL optimizing a flawed objective?



Private & ConfidentialIs BYOL optimizing a flawed objective?

This objective has trivial global minima in the form of collapsed constant 
projections and predictions. But

BYOL is not optimizing             . 



Private & ConfidentialIs BYOL optimizing a flawed objective?

BYOL (probably) does not solve an optimization problem:
● No notion of global/local optima just equilibria of the dynamic 

(think GANs)
          → No convergence guarantees...

● Constant representations are equilibria but may not be stable 
or attractive.

V.S.



Private & ConfidentialIs BYOL ‘batch implicit contrastive’?

Are batch statistics indeed crucial
to make BYOL work?



Private & ConfidentialBYOL works even without batch statistics

Result 1: BYOL indeed performs very poorly when all BN are removed (projection + prediction + encoder).

Hypothesis: BN provides a good init, doubly crucial for BYOL, both for optim and for providing good initial targets.

Experiments to test hypothesis: Can we recover perf with better inits and no batch statistics.

Result 2: BYOL does not collapse and works well with better initialization.

Result 3: BYOL with GroupNorm and WeightStandardization (no batch stats) performs the same as BYOL with 
BatchNorm.



What factors prevent collapsing? BYOL 

+ Negative example -1.6pts

- Target Collapse

- Predictor Collapse 

Base BYOL 72.5

- Remove predictor* Collapse

ImageNet top-1 accuracy @300 epochs

Remark:  BYOL without predictor → Mean Teacher1 but without supervised signal.

 1Mean Teacher: Tarvainen et al., Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, 2017.

- Remove EMA of target network (and keep the stop gradient) Barely learns

- Add explicit negative examples 72.7



Private & Confidential

H: Near optimal predictor is key.

How crucial is BYOL’s predictor?

Results:

● BYOL without predictor → Mean Teacher, collapses without supervised signal.

● BYOL with near optimal predictor → Works without target network:
○ Optimal linear predictor on the batch → 45% top1 accuracy
○ Increased predictor learning rate (λ ratio of learning rates):



How crucial is BYOL’s predictor?

To reduce conditional variance: 

● Collapse target representation.

Online 
projection

Target 
projection

Online projection objective: Conditional variance of targets w.r.t. Online

Optimal predictor: Conditional expectation of targets w.r.t. online

:

:

To reduce conditional variance: 

● Collapse target representation.
● Increase information in the online projection. 

BYOL only plays on second one, (stop gradient in targets) 

→ Always increase the variability of online projections!



Thank you!

The code and checkpoints are available:
https://github.com/deepmind/deepmind-research

Follow-up work on BYOL and BatchNorm:
https://arxiv.org/abs/2010.10241

https://github.com/deepmind/deepmind-research
https://arxiv.org/abs/2010.10241%5C

