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“Optimization is 
all you need!”



Motivation

Goal: “Understand” why DL methods used in practice work
(small test error / test loss).

Hope: Predict how design choices affect test error.

This Work: Framework/roadmap for achieving goal
(for supervised classification)



Setting (briefly)

Setup: Supervised classification.

Distribution 𝑥, 𝑦 ∼ 𝐷
Want: classifier 𝑓 𝑥 with small test error : Pr

!,#∼%
[𝑓 𝑥 ≠ 𝑦]

Do: SGD on NN to minimize train error



Our Framework (high-level)

Classical Framework: Finite train set.

“Good models are those with small generalization gap”

Our Framework: Models trained on finite train set ≈ infinite train set

“Good models are those which optimize quickly, on infinite data”



Our Framework
Main Idea: compare Real World vs. Ideal World

Real World(n, t)
- Sample train set 𝑆 ∼ 𝐷!
- Initialize architecture 𝑓" from ℱ
- For 𝑡 steps:

- Sample minibatch from 𝑆
- Gradient step on minibatch

- Output 𝑓#

Fix distribution 𝐷, architecture ℱ, num samples 𝑛.
Then, for all steps 𝑡 ∈ ℕ define:

𝑓# ← Trainℱ,&(𝑛, 𝑡)

Ideal World(t)

- Initialize architecture 𝑓" from ℱ
- For 𝑡 steps:

- Sample minibatch from 𝐷
- Gradient step on minibatch

- Output 𝑓#''(

𝑓#''( ← Trainℱ,&(∞, 𝑡)

SGD on empirical loss
(Train Error ≤ Test Error)

SGD on population loss
(Train Error ≡ Test Error)

≈
Test Error



Example

Real World: 50K samples, 100 epochs. Ideal World: 5M samples, 1 epoch.

Models which
optimize faster in Ideal World,
generalize better in Real World





(More) Precise Claim

SGD on deep nets produces similar models whether trained on 
re-used samples (Real) or fresh samples (Ideal)

…as measured by Test SoftError
…for as long as the Real World optimizer is still moving

(e.g. TrainError ≥ 1%)



(More) Precise Claim

Main Claim: Bootstrap error 𝜖 𝑛, 𝒟, ℱ, 𝑡 is small for realistic (𝑛,𝒟, ℱ), and all 𝑡 ≤ 𝑇(𝑛)

Where “stopping time” 𝑇(𝑛) := time when Real World reaches TrainError ≤ 1%.

Our decomposition:

ERM decomposition:





𝐿(𝑛): Test error on n samples (Real World, trained to convergence)
𝑇 𝑛 : Time to converge on n samples (Real World SGD steps)
5𝐿 𝑡 : Test error after t online SGD steps (Ideal World)

Deep Bootstrap: 𝐿 𝑛 ≈ 5𝐿(𝑇 𝑛 )

Thus, good training procedures:
1. Optimize quickly on infinite samples [0𝐿 small]

(high-capacity models, skip-connections, BN, …)
2. Don’t optimize too quickly on finite samples [𝑇 large]

(regularization, data-aug,…)

NB: Scaling exponents multiply



Significance

To understand generalization, sufficient to understand:
1. Online optimization: how fast Ideal World learns.

[long history, but not in DL]

2. Empirical optimization: how fast Real World convergences
[recent progress: Arora, Allen-Zhu,…]

3. Bootstrap Error: |Real - Ideal|
[long history in stats, but not in DL]

Assume/prove/believe bootstrap error small ⇒
generalization reduced to optimization!



Validation: Summary of Experiments

• CIFAR-5m: 5-million synthetic samples from a 
generative model trained on CIFAR-10

• ImageNet-DogBird: 155K images by collapsing 
ImageNet catagories. Binary task.

• Varying settings: {archs, opt, LR,…}
convnets, ResNets, MLPs, Image-GPT, Vision-
Transformer



Implications:
Deep Learning through 
the Bootstrap Lens

Real World Ideal World



Effect of Pretraining
Pretrained models generalize better (Real) 
“because” they optimize faster (Ideal)



Effect of Data Aug
Data-aug in the Ideal World = 

Augment each sample once

Two potential effects:
1. Ideal World Optimization Speed
2. Real World Convergence Speed

Good data-augs:
1. Don't hurt learning in Ideal World
2. Decelerate optimization in Real World (train for longer)

see “Affinity and Diversity” 
of [Gontijo-Lopes et al.]



Implicit Bias → Explicit Optimization

Two archs from [Neyshabur 2020]:
D-CONV (convnet) ⊂ D-FC (mlp)

Both train to 0 Train Error, but 
convnet generalizes better.

Traditionally: due to “implicit bias” 
of SGD on the convnet.

Our view: due to better 
optimization in the Ideal World



Effect of Learning Rate



Random Labels (Thought Experiment)
“Understanding deep learning requires rethinking generalization” 
[Zhang et al. 2016]
- Train on randomly-labeled inputs.
- 0% train error, 90%/trivial test error.

Here:
- Real World: Test Error >> Train Error
- Real World Test ≈ Ideal World Test



Choice of Metric Matters!



Conclusions 1

- Reduced: one hard problem (generalization) è two hard     problems (on/offline optimization)

- In future: Forget generalization. Focus on optimization.
- Largest models trained for less than one epoch (= Ideal World)

- Many mysteries of ML remain in Ideal World
(no “generalization problem”, but: arch, repr. learning, robustness…)

- Every new advance in DL: “How does it affect online opt? Offline opt?”

different!



Conclusions 2

- Connection between over/under parameterized regimes:
- “Overparam models behave like underparam ones…in certain sense (test soft-error)”

- “Overparam models DO NOT behave like underparam ones in general”

- Many arbitrary choices in deep learning (arch, loss, optimizer, activation..)
- Q: Which ones work for generalization?
- A: Anything that works well for online optimization

Speculation: Holds much more generically (not just SGD/deep nets/etc..)

“Distributional Generalization” [Nakkiran, Bansal 2020]

“Deep Bootstrap” [N, Neyshabur, Sedghi 2020]

Thanks!



Extras



What about Non-Deep Learning?

• Not true for well-
specified linear 
regression!
• Can be contrived to be 

true for misspecified
regression



When Bootstrap Fails

1. Near Double-Descent region (Real World has pathology)
- Or any setting with non-monotonic Soft-Error

2. Very small number of samples

3. Potentially: weird distributions / architectures / optimizers?



[Kaplan et al 2020]
GPT-3 Learning Curves ResNet18 Curves



Why Soft-Error?

Want: RealWorld → IdealWorld as (model, data) → ∞.
- This doesn’t always happen w.r.t Test Error.

Claim: In an overparameterized limit of (model, data) → ∞,
interpolating classifiers converge to optimal samplers: 𝑓 𝑥 ~ 𝑝 𝑦 𝑥

…NOT to Bayes-optimal classifiers: 𝑓∗ 𝑥 = argmax" 𝑝(𝑦|𝑥)

“Distributional Generalization” [Nakkiran, Bansal 2020]



Scaling Laws in Ideal World

L(t) : Ideal-world learning curve

Empirically: power law
𝐿 𝑡 ∼ 𝑡89



ImageNet Experiments



Effect of Pretraining



When Data-Aug Hurts









CIFAR-5m Experiments



ImageNet Experiments



Validation: Summary of Experiments

• CIFAR-5m: 5-million synthetic samples from a generative model 
trained on CIFAR-10
• Realistic: Training WRN on n=50K from CIFAR-5m yields 91.2% test acc on 

CIFAR-10

• ImageNet-DogBird: 155K images by collapsing ImageNet catagories.
• Real World: n=10K for 120 epochs
• Ideal World: n=155K for < 8 epochs (approximation of 𝑛 = ∞ )

• Various archs: convnets, ResNets, MLPs, Image-GPT, Vision-
Transformer



Practice: Real World 
(trained as long as 
possible)

Real World
(stopped at 𝑇! : when 
Train Error ≈ 1% )

Ideal World 
(stopped at 𝑇! )

“Deep Bootstrap”

RealWorld 𝑁, 𝑇 = ∞ ≈ RealWorld 𝑁, 𝑇' ≈( RealWorld ∞, 𝑇'



Learning curves:

𝐿(𝑛): Test error on n samples (Real-world, trained to convergence)
𝑇 𝑛 : Time to converge on n samples (Real world SGD steps)
5𝐿 𝑡 : Test error after t online SGD steps (Ideal World)

Then:
𝐿 𝑛 ≈ 5𝐿(𝑇 𝑛 )



Classical Framework (ERM)

Classical Framework: Finite data, need to understand generalization gap

“Good models are those with small generalization gap”

Obstacles:
1. Hard: Decades of work, little progress.
2. Large models can fit train sets → trivializes framework

0 0


