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Neural Volumetric Rendering



Rendering

querying the radiance value
along rays through 3D space

.

What colour?




Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections




Neural

using a neural network as a
scene representation, rather
than a voxel grid of data

XL >
% A '&Q ‘Q ;
"&Q,;‘\\'\Q/,“ properties
O—C



Motivation: novel view synthesis

Inputs: sparse, unstructured Outputs: representation allowing us to

photographs of a scene render new views of that scene



Why care about view synthesis?

> Key to enabling great virtual reality experiences
> Only requires 2D images for training and evaluation

> Research progress can inform many other 3D vision tasks
(3D reconstruction, material estimation, relighting, etc)




Inspiration from view synthesis:
Predicting a 3D voxel grid of RGB-alpha values

Soft3D [Penner and Zhang 2017], DeepView [Flynn et al. 2019],
Stereo Magnification [Zhou et al. 2018], Single-View MPI [Tucker and Snavely, 2020],
MPI Extrapolation [Srinivasan et al. 2019], DeepVoxels [Sitzmann et al. 2019],

Local Light Field Fusion [Mildenhall and Srinivasan et al. 2019], Neural Volumes [Lombardi et al. 2019]



Inspiration from 3D computer vision:
Using neural networks as a shape representation

DeepSDF, Park et al. 2019

o o . * Decision
—___ boundary
e of implicit
® . o surface
"7 L e SDF>0
(a) SDF <0
Supervised with 3D: Supervised with images:
DeepSDF [Park et al. 2019], Scene Representation Networks [Sitzmann et al. 2019],
Occupancy Networks [Mescheder et al. 2019], Differentiable Volumetric Rendering [Niemeyer et al. 2020],
Local Deep Implicit Functions [Genova et al. 2020], DIST [Liu et al. 2020]

Local Implicit Grids [Jiang et al. 2020]



Overview

> Volumetric rendering math

> Neural networks as representations for spatial data
» Neural Radiance Fields (NeRF)

> NeRF improvements and extensions
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Overview

> Volumetric rendering math
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Traditional volumetric rendering

s.Chandrasekhar > Theory of volume rendering co-opted from physics in the
TRANSFER 1980s: absorption, emission, out-scattering/in-scattering

*

Chandrasekhar 1950, Radiative Transfer
Kajia 1984, Ray Tracing Volume Densities
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Traditional volumetric rendering

Pt.Reyes = Foreground over Hillside over Background.

Alpha compositing [Porter and Duff]

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering
Porter and Duff 1984, Compositing Digital Images

> Adapted for visualising medical data and linked with
alpha compositing
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Traditional volumetric rendering

> Modern path tracers use sophisticated Monte Carlo

Physically-based Monte Carlo rendering [Novak et al]

methods to render volumetric effects

Novak et al 2018, Monte Carlo methods for physically based volume rendering 14



Volumetric rendering and machine learning

> Various volume-rendering-esque methods devised for 3D

.y el shape reconstruction methods
e i

“Probabilistic” voxel grid rendering [Tulsiani et al]

Tulsiani et al 2017, Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency
Henzler et al 2019, Escaping Plato’s Cave: 3D Shape From Adversarial Rendering
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Volumetric rendering and machine learning

Slices from a volumetric scene
representation [Zhou et al]

> Scaled up to higher resolution voxel grids, ML methods
can achieve excellent view synthesis results

View synthesis from a dynamic

voxel grid [Lombardi et al]

Zhou et al 2018, Stereo Magnification: Learning View Synthesis using Multiplane Images
Lombardi et al 2019, Neural Volumes: Learning Dynamic Renderable Volumes from Images 16



Volumetric formulation for NeRF

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral 17



Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral 18



Volumetric formulation for NeRF

Ray r(f) = 0+ td

Camera It a ray traveling through the scene hits a

particle at ¢, we return its color ¢(7)
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Volumetric formulation for NeRF

P[hit at {] = o(¢) dt

This notion is probabilistic: chance that ray
stops in a small interval around 7 is o(¢) dt.

o is known as the “volume density”
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Volumetric formulation for NeRF

P[no hits before t] = T(1)

To determine it t is the first hit, need to know T(?):
probability that the ray didn’t hit any particles earlier.
1(¢) is called “transmittance”
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Volumetric formulation for NeRF

P[no hits before t] = T(1)

To determine it t is the first hit, need to know T(?):
probability that the ray didn’t hit any particles earlier.
1(¢) is called “transmittance”

We assume o is known and want to use it to calculate T
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Volumetric formulation for NeRF

P[no hits before t] = T(1)
Plhit at £] = o(¢) dt

o and T are related by the probability fact that
P[no hits before t + dt] = P[no hits before ¢] X P[no hit at ¢]
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Volumetric formulation for NeRF

P[no hits before t] = T(1)
Plhit at £] = o(¢) dt

o and T are related by the probability fact that
1(t + dr) — 1(1) X (1 —o(t)dr)
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Volumetric formulation for NeRF

T(t + dt) = T(t)(1 — o()dt)
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Volumetric formulation for NeRF

T(t+ dt) = T(t)(1 — o(t)dr)

Split up differential =  T(r) + T'(0)dt = T(¥) — T(H)o(t)dt
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Volumetric formulation for NeRF

T(t+ dt) = T(t)(1 — o(t)dr)

Split up differential =  T(¢r) + T'(0)dt = T(¥) — T(¢)o(t)dt

1'(1)
1(2)

dt = — o(t)dt

Rearrange =
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Volumetric formulation for NeRF

T(t+ dt) = T(t)(1 — o(t)dr)

Split up differential =  T(¢r) + T'(0)dt = T(¥) — T(¢)o(t)dt

1'(1)
11(1)

dt = — o(t)dt

Rearrange =

4
Integrate =  log T(¥) = — J o(s)ds
[

0
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Volumetric formulation for NeRF

1(t) = exp (— a(z‘))
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Volumetric formulation for NeRF

1(t) = exp (— | a(z‘))

Food for thought #1: for a constant density medium and #, = 0, we have
1 -T7(t) =1 —exp(—o1),

which is the exponential distribution CDF
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Volumetric formulation for NeRF

1(t) = exp (— | a(z‘))

Food for thought #2: From our derivation,

Vlog T(t) = — o(?),

sO —o acts as the score function of transmittance.

Interesting: T depends on the current camera ray, but ¢ does not.
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Volumetric formulation for NeRF

Finally, what we want to know: the probability that a ray first hits a particle at 7 is

T()o(t) dt = exp (—J o(s) ds> o(t) dt

0
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Volumetric formulation for NeRF

So the expected color returned by the ray will be
r'l‘l

T(t)o(t)c(r) dt

0y Z'O
Note the nested integral!
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Approximating the nested integral

4

We use quadrature to approximate the nested integral,
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Approximating the nested integral

4

We use quadrature to approximate the nested integral,

splitting the ray up into n segments with endpoints {7, %, ..., £}
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Approximating the nested integral

4

We use quadrature to approximate the nested integral,

splitting the ray up into n segments with endpoints {7, %, ..., £}
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Approximating the nested integral

4

We assume volume density and color are

roughly constant within each interval
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Approximating the nested integral

| T(t)o(t)c(t) dt

This allows us to break the outer integral
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Approximating the nested integral

pT(t)a(t)c(t) dt~ ) J T(t)oc, dt

i=1 v

This allows us to break the outer integral
into a sum of analytically tractable integrals
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Approximating the nested integral

r.T(t)g(t)c(t) dt ~ Z J 17 C.

i=1 7t

Catch: piecewise constant density and color
do not imply constant transmittance!
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Approximating the nested integral

r.T(t)g(t)c(t) dt ~ Z J 17 C.

i=1 7t

Catch: piecewise constant density and color
do not imply constant transmittance!

Important to account for how early part of a
segment blocks later part when o; is high
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Approximating the nested integral

1(2)

nl’i nt
J1 Jt,
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Approximating the nested integral

1(2)

l_l 1 *
exp [_ Z 0.5.] -7 How much is blocked by

all previous segments?”
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Approximating the nested integral

1(2)

ot
exp (— o; ds)
Jt,

"How much is blocked partway

exXp |\—o il — 1
through the current segment?” P (=it = 1))



Approximating the nested integral

" n_oliv
T(Ho()e(d) dt ~ Z T(t)oc, dt
© =1

. .Jt-l
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Approximating the nested integral

" 1l +1
To(Detydt~ Y. | T()og;dt
: i=1 1
n Fliv
Substitute = Y Toe;| exp (=0t —1)) di
i=1 v
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Approximating the nested integral

nT(t)a(t)c(t) dt X 2 1(t)oc; dt
. -

n "Lt

=1 v
Integrate = l'o.c.
=1 — 0

47



Approximating the nested integral

nT(t)a(t)c(t) dt~ ) | TWogd
.J ~

n "Lt

=1 “ 1
— Tiaicl
i=1 — 0
Cancel o; = Tc. (1 —exp(—o00)))
i=1
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Connection to alpha compositing

a; = 1 — exp(—o0;0;)

= Z T:e; (1 — exp(—09)))
=1
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Connection to alpha compositing

color = 2 loc; = Z Iic; (1 —exp(—o0,0,))
=1 =1

a; = 1 —exp(—0,0;) # | |
T. = H(l — ;) = exp [—2 0]-5]-]

= Z T:e; (1 — exp(—09)))
=1
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Summary: volume rendering integral estimate

Rendering model for ray r(r) = o + rd:
Ray

colors

weights

How much light is blocked earlier along ray:

—1
r=[]a-a
L ¢

How much light is contributed by ray segment i:

3D volume

mera

a; = 1 — exp(—0,0,)
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Summary: volume rendering integral estimate

How do we store the values of
¢, o at each point in space?
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Overview

> Neural networks as representations for spatial data
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Toy problem: storing 2D image data

N
H N |
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H
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- N o

rﬁ \

) BT (- b)

Usually we store an image as a
2D grid of RGB color values
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Toy problem: storing 2D image data

g
co—=Ji~ -5

What it we train a simple fully-connectec
network (MLP) to do this instead?
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Naive approach fails!

Ground truth image Neural network output
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Problem:

"Standard” coordinate-based MLPs cannot represent
high frequency functions

o57



Solution:

Pass input coordinates through a
high frequency mapping first
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Example mapping: “positional encoding”

V—PIII—P y

Sin(v), cos(Vv)
sin(2v), cos(2v)
sin(4v), cos(4v) —p

sin(2°7tv), cos(2° v




Problem solved... but why?

Ground truth image Neural network output without Neural network output with

high frequency mapping high frequency mapping
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Fourier Features Let Networks Learn

High Frequency Functions in Low Dimensional Domains
NeurlPS 2020
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Training networks =~ kernel regression

Jacot et al., Neural Tangent Kernel: Convergence and generalization in

neural networks, NeurlPS 2018 62



Kernel regression

>~ Method for fitting a continuous function to a set of data points {(x;, y.) }

> High level: add up a set of blobs (kernel functions), one centered at each
input point, each with its own weight

» Weights are optimal in a least-squares sense: min,, Zi |y, —]?W(xi)H2

A\

n
fw(x) — 2 W; k(x — xi) <4+—— Blob centered at

/ i1 \ training input point x;

Estimated function Weight corresponding to

blob centered at x;
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"Width"” of kernel function is critical

» |f the kernel function is too wide, reconstruction is too smooth. If it's too
skinny, reconstruction does not interpolate correctly.

> Similar to picking the right reconstruction filter bandwidth in signal
processing to avoid either blurring or aliasing.

o4



"Width"” of kernel function is critical

65

Nonparametric function estimate
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"Width"” of kernel function is critical

Underlying kernel function Nonparametric function estimate
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Training networks = kernel regression

> Recent ML theory work shows that training neural network with gradient
descent becomes the same as performing kernel regression as the width
of each layer goes to infinity

> Using a Fourier feature mapping changes the corresponding kernel
function (the neural tangent kernel), allowing MLPs to represent higher
frequency functions

Jacot et al., Neural Tangent Kernel: Convergence and generalization in

neural networks, NeurlPS 2018 67



Fourier teature mapping

> Mapping procedure = sample a random tall skinny matrix B and apply it to
the input coordinate vectors x, then apply sin and cos:

y(X) = (sin(27Bx), cos(27BXx))

> Same as the Random Fourier Feature mapping proposed by [Rahimi and
Recht 2008]

> "Positional encoding” is a special case with deterministic B:

B=[21T 21 ... 2417

Rahimi and Recht, Random features for large-scale kernel machines, NeurlPS 2008
Vaswani et al., Attention is all you need, NeurlPS 2017 68



Fourier feature mapping: simple 2D example

y(X)
sin(27b | x) \ \ cos(2zb | x)

sm(27szX) ?’ % c:os(2yzb2 X)

sm(27rbTX) y// //// COS(Z]Z'bTX)

SiIl(Z]Z'b]_l\_,_zX) \\ \ cos(27zb;,_2x)
sm(27zbg,_1x) “\\\\ \\\\\\ COS(Z]Z'b]_l\_,_IX)

sm(27zb]f,x) = — cos(27rbg,x)

—
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“Neural tangent kernel” is a scalar function of dot product

> Can express the kernel corresponding to the network as a scalar function
of the inner product of two input vectors:

NTK(x,y) = h(x'y)

> Dot product of Fourier feature mapping is simple:

v(X) ' 'y(y) = sin(2zBx) 'sin(2zBy) + cos(27zBx) ' cos(2zBy)
= cos(2zB(x —y))

> Hence adding Fourier features changes the effective kernel to:
NTR(y(x), 7(y)) = h(cos(2zB(x —y)))
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Fourier feature mapping lets us control width of neural tangent kernel

't we simply scale B, we can manipulate the
width of the kernell ~_

NTK(7(x), 7(y)) = h(cosaB(x — y)))
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Changing feature scale o traverses an undertitting-overtfitting curve

Target
Signal

Regressed
Signal

Supervision
Points

(2

Loss

== = = [rain Test
Underfitting Overfitting
\'\
\ ;
4
\
1
I"\
\
\
\
b
\""f \\V,".

Scaling of Fourier feature frequencies



Changing feature scale o traverses an undertitting-overfitting curve

Network output

i 111
] e Test

22 -1 20 1 22 93 4 25
Fourier feature scale o

Performance vs. scale value
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Changing feature scale o traverses an undertitting-overfitting curve

Underfitting — poor performance Kernel too wide
on both training points and test
points (interpolation behavior)

Learned output too smooth

Slice of 2}neural tangent kernel

20 e TFQIN 1.0 -
45 - | — Test
0.8 -
40
35 1 0.6 -
oc
=
¢ 30 -
0.4 -
25 -
20 1 0.2 -
15 -
. . . ; . ; , . : 0.0 : : ; . .
' f 2-2 271 20 21 22 23 24 25 26 -100 -50 0 50 100
Fourier feature scale o Pixel offset
Performance vs. scale value Network kernel shape

Network output
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Changing feature scale o traverses an undertitting-overfitting curve

Overtfitting — great performance on Kernel 166 Narrow

training points but very baa

Output exhibits aliasing interpolation behavior
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Optimal scale o lies between the extremes

Network output

2"2 2Ll 2'0 2'1 2'2 2'3 2'4 2'5 2'6
Fourier feature scale o

Performance vs. scale value
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Which random distribution for B?

> We empirically observe that the standard deviation of entries in B matters
much more than higher order moments

24 -
). O po® o Ve g O
o - Gaussian
de " : Uniform
2 18- Uniform log
16- - Laplacian
14 1

2! 23 25 27
Standard deviation of sampled b;
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Overview

» Neural Radiance Fields (NeRF)
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NeRF = volume rendering +
coordinate-based network



"How do we store the values of ¢, o at each point in space?”

encoding
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"How do we store the values of ¢, 6 at each point in space?”

encoding

o
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"How do we store the values of ¢, 6 at each point in space?”

encoding
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"How do we store the values of ¢, 6 at each point in space?”

encoding
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"How do we store the values of ¢, 6 at each point in space?”

encoding
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"How do we store the values of ¢, 6 at each point in space?”

encoding

o
+
N
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o
=
2
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[l
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"How do we store the values of ¢, ¢ at each point in space?”

..
MLP

N

.

Positional
encoding

4
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Use neural network to replace large N-d array

(r,2,b,0)

versus

()C, Vs <s 99 ¢) _blll_b(ra g s ba 6)
FQ
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Train network using gradient descent
to reproduce all input views of scene

Volume rendering of  Ground truth

MLP colors/densities image
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Viewing directions as input

Ray

(x,¥,2,0,¢) as input

‘ Camera

3D volume
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Viewing directions as input

Change (0, ¢) to visualize

view-dependent effects
3D volume

4
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Visualizing view-dependent effects

Radiance distribution for Radiance distribution for
point on side of ship point on water's surface
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Visualizing view-dependent effects

Regular NeRF rendering Manipulating input viewing directions
94



Visualizing learned density field as geometry

Regular NeRF rendering Expected ray termination depth



Visualizing learned density field as geometry
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Overview

> NeRF improvements and extensions
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NeRF problems

> Scene representation is not anti-aliasea

|
T

1/16x 1/8x 1/4x 1/2x 1x 2X 4x 8X 16x
Aliased Correctly prefiltered Overblurred

[Barron] prefiltered positional encoding

Barron et al 2021, Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields 93



NeRF problems

> Rendering is very slow

[Hedman] realtime online viewer

Reiser et al 2021, KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Garbin et al 2021, FastNeRF: High-Fidelity Neural Rendering at 200FPS
Yu et al 2021, PlenOctrees For Real-time Rendering of Neural Radiance Fields

Hedman et al 2021, Baking Neural Radiance Fields for Real-Time View Synthesis 99



NeRF problems

> Network must be retrained for every scene

> Requires many input images

[Wang] network never trained on this scene!

Trevithick et al 2020, GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering
Wang et al 2021, IBRNet: Learning Multi-View Image-Based Rendering
Yu et al 2021, pixeINeRF: Neural Radiance Fields from One or Few Images 100



NeRF problems

[Srinivasan] trained on multiple
lighting conditions

> Needs scene to be static and have fixed lighting

[Park] trained on selfie video
[Tancik] trained on tourist photos

Bi et al 2020, Neural Reflectance Fields for Appearance Acquisition

Park et al 2020, Nerfies: Deformable Neural Radiance Fields

Li et al 2021, Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Srinivasan et al 2021, NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis

Tancik et al 2021, Learned Initializations for Optimizing Coordinate-Based Neural Representations
Martin-Brualla et al 2021, NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections 101



https://github.com/yenchenlin/awesome-NeRF
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Neural Volumetric Rendering: NeRF, etc.
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