
Making Deep RL Easier to Use:
Alleviating Optimization and Tuning Challenges in Deep RL

Aviral Kumar
UC Berkeley

Reinforcement Learning

this is done
many times

several rounds
of collecting
its own data

Large amounts of
training time!

This is not like how we do it in
supervised learning, where we use

datasets + large networks

Narrow generalization

Reinforcement Learning from Static Datasets
Offline RL online RL

offline RL

Levine, K., Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ’20

Better generalization: large networks, diverse datasets

Can do all sorts of cool things: use unlabeled data,
task-agnostic data, respect safety constraints, etc.

….but is it easy to use?

Challenges in Offline Reinforcement Learning
Challenge 1: Answering counterfactual

questions accurately is hard!

how well it does how well it thinks
it does (Q-values)

Overestimates the value of unseen outcomes

Can we solve this distributional shift issue?

Yes, several algorithms:

1. Algorithms that learn lower-bounds on Q-values
2. Algorithms that constrain behavior close to the data

K., Levine. NeurIPS Tutorial on Offline Reinforcement Learning. 2020.

Challenges in Offline Reinforcement Learning
Challenge 2: Issues with optimization and tuning

Performance goes up and comes back down

Learning can be unstable: error
may go up with more training

What are the issues? How can we
detect and address them?

Supervised learning:
Track train and validation error,

Perform early stopping if overfitting,
Increase network capacity if underfitting

Reinforcement learning:
What to track?

When is the algorithm “overfitting”?
What regularization to add?

Does the algorithm ”underfit”, but it
appears as “overfitting”?

Understanding Optimization Challenges in RL
Bellman equation

1. Train Q-functions by minimizing TD Error:

2. (Optional) Collect new data in the environment by
rolling out the learned policy

Q-Learning

Gradient descent

Training >=1 step per datapoint leads to
poor performance

n = 1
n = 4
n = 8

OK, maybe I need to
prevent overfitting? But training error is high

with larger n
K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021

Implicit Under-Parameterization
TD Error (Regressing to itself)

s

a
Q�(s,a)

Z
ĔĬĔī

Ĕƀø�
�%
�)ŎŎĲŎ

}
ÔĬģ͚݊

͛�
ô
øîŎøÔŒøŒ

Z
ĔĬĔī

Ĕƀø�
�%
�)ŎŎĲŎ

}
ÔĬģ͚݊

͛�
ô
øîŎøÔŒøŒ

Z
ĔĬĔī

Ĕƀø�
�%
�)ŎŎĲŎ

Big network implicitly
behaves as a low-capacity,

under-parameterized
network

Q�(s,a) = wT��(s,a) ��(s,a) 2 R|S||A|⇥d

Learned features

Gradient descent optimizer

IUP = Feature rank collapse

Rank collapse

More aliasing

Poor performance

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021

Empirical Evidence of Rank Collapse

Rank collapse also strongly corresponds to poor performance!

Also, tells us that RL algorithms learn poor representations!

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021

Why is Implicit Under-Parameterization Bad?
Rank collapse inhibits the ability to
represent the optimal Q-function

Also leads to increased training TD
errors in several cases

“Aliasing” effects Lack of expressivity to minimize training loss

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021

What Causes Implicit Under-Parameterization?
Rank decreases only
with bootstrapping

Does not arise with
“oracle” Q-target values

“Moving” nature of
objective is not the cause

Ø Does not happen without bootstrapping

Ø Moving objectives is not the issue, but something specific to bootstrapping is

Ø Using oracle target-values does not lead to rank collapse
K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021

What Causes Implicit Under-Parameterization?

Standard TD error Implicit regularizer

Simplicity bias
….compounded

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021

How Can We Fix Implicit Under-Parameterization?

Intuition: Penalize the disproportionate increase in singular values

Take 1: Address the symptom

Offline RL

But this doesn’t seem fundamental,
since optimal solutions may

not have highest rank.

Can we directly address the cause of the issue?

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021

Take 2: Understanding Optimization Dynamics
D = {(si, ai, ri, s0i)}Ni=1

Q(s, a) r(s, a) + �Q(s0, a0)

X

(s,a,s0,a0)

�(s, a)>�(s0, a0)
Feature dot products
increase for unseen

actions in the backup

“Co-adapted”
features�(s, a)

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

Feature Dot Products Increase over Training
Hi

gh
 d

ot
 p

ro
du

ct
s

Si
m

ila
r Q

-v
al

ue
s

Incorrect Q-values
learned eventually;

dot-products increase
throughout training

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

High Feature Dot Products and Performance

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

Return degrades from good solutions Dot products increase, returns decrease

Overall training error is still low!An implicit regularization phenomenon that
arises when running gradient descent with

bootstrapping, that leads us to maximize dot
products of features

X

(s,a,s0,a0)

�(s, a)>�(s0, a0)

How can we reduce this implicit regularization?
Can we add an explicit regularizer to convert this deep RL implicit regularizer to that in SL?

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

RRL(�) =
X

(s,a,s0,a0)

�(s, a)>�(s0, a0)� ��(s, a)>�(s0, a0)

Instead add this back in
explicitly!

Our Method (DR3): Add an explicit
regularizer that minimizes dot

products

Also mitigates rank collapse!

RSL(�) =
X

(s,a)

�(s, a)>�(s, a)

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

Empirical Performance on Offline RL Benchmarks
17 Atari games

2 base offline
RL methods

Improves both
stability and
performance

Stability is very
important

How can these algorithmic advances guide
practitioners in debugging and tuning RL
algorithms on new applications?

A Workflow for Offline Deep RL

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

― Test Loss Validation loss
--- Train loss

Training steps

Supervised Learning

Lo
ss

 v
al

ue RL?

q Test error different from
training objective

q Distribution of resulting policy
different from training dataset

q Increased network capacity doesn’t
mean better Q-functions

q How should we prevent overfitting?

Let’s say we figure out the above, even then..

We show how we can derive a workflow
for a sub-class of offline RL algorithms.

A Workflow for Conservative Offline RL

Training steps

+ Network capacity

+ Capacity
increasing

regularization

― Performance

― Performance

+ Capacity
decreasing

regularization

Policy selection

― Policy return
--- Dataset Q-value

Training steps

Overfitting

R
et

ur
n

/ Q
-v

al
ue

― Policy return
--- TD error/ CQL loss
… Optimal return

Training steps

Underfitting

R
et

ur
n

/ T
ra

in
 E

rro
r

• Track Q-values on the
dataset to measure
overfitting

• (Early stopping) Stop
training Q-values start
decreasing

• Large loss values to
detect underfitting

Conservative
Offline RL

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

Overfitting in Conservative Offline RL
Overfitting

When Q-values start to decrease over training; stop training.
To address overfitting, we can use regularization (e.g., dropout, variational

information bottleneck on features of the learned network)

Q-values
decrease over

training

With VIB

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

Underfitting

When training losses are high. In this case, we can use:
1. More expressive networks for the policy architecture

2. DR3 penalty for the critic (and maybe more expressive architectures)

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

Underfitting in Conservative Offline RL

0K 50K 100K 150K

Gradient Steps

0.00

0.02

0.04

0.06

0.08

0.10

T
D

E
rr

or
L T

D
(µ

)

TD Error vs Architecture
Pot : CQL + ResNet

Pot: CQL

Drawer : CQL + ResNet

Drawer: CQL

0K 50K 100K 150K

Gradient Steps

0

2

4

6

8

10

12

14

A
vg

.
Q

-v
al

ue
in

D

Avg Q-value vs Architecture
Pot : CQL + ResNet

Pot: CQL

Drawer : CQL + ResNet

Drawer: CQL

Large TD error
with base net,

lower with
Resnet + DR3

Q-values
increase over

training

Tuning Underfitting on Real Robots
Scenario: Sawyer Manipulation tasks

(Place lid on pot, Open Drawer)

9/12

8/12

Tuning underfitting

Tuning underfitting

0/12

0/12

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

Baseline CQL (3/9) Baseline CQL + Policy Selection (7/9)

Tuning Overfitting on Real Robots
Scenario: Real WidowX pick & place

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

Tuning Overfitting on Real Robots

Baseline CQL + Overfitting Correction (VIB) + Early Stopping (8/9)

Scenario: Real WidowX pick & place

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

Summary and Conclusion
Ø Applying deep RL on real and new domains will (most likely) require making it’s behavior

understandable and amenable to easy tuning

Ø One way to do so is to understand how algorithms behave with neural networks:
v Implicit Regularization of SGD, model class, etc. can hurt
v Can add explicit regularization to tackle this problem.

Ø We should devise workflows (guidelines) for making it easy to use/tune deep RL.
v We devise workflow for some algorithms and find it to work well on

new, previously untuned problems.

Contact me at: aviralk@berkeley.edu

Work done with Sergey Levine (UC Berkeley), George Tucker (Google), Rishabh Agarwal
(Google), Dibya Ghosh (UC Berkeley), Anikait Singh (UC Berkeley), Stephen Tian (UC
Berkeley), Chelsea Finn (Stanford), Tengyu Ma (Stanford), Aaron Courville (MILA)

Thank You!

mailto:aviralk@berkeley.edu

