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Reinforcement Learning

this is done
many times

several rounds
of collecting 
its own data

Large amounts of 
training time!

This is not like how we do it in 
supervised learning, where we use 

datasets + large networks

Narrow generalization



Reinforcement Learning from Static Datasets
Offline RL online RL

offline RL

Levine, K., Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ’20

Better generalization: large networks, diverse datasets

Can do all sorts of cool things: use unlabeled data, 
task-agnostic data, respect safety constraints, etc.

….but is it easy to use?



Challenges in Offline Reinforcement Learning
Challenge 1: Answering counterfactual 

questions accurately is hard!

how well it does how well it thinks
it does (Q-values)

Overestimates the value of unseen outcomes

Can we solve this distributional shift issue?

Yes, several algorithms:

1. Algorithms that learn lower-bounds on Q-values
2. Algorithms that constrain behavior close to the data 

K., Levine. NeurIPS Tutorial on Offline Reinforcement Learning. 2020.



Challenges in Offline Reinforcement Learning
Challenge 2: Issues with optimization and tuning

Performance goes up and comes back down

Learning can be unstable: error 
may go up with more training

What are the issues? How can we 
detect and address them?

Supervised learning:
Track train and validation error,

Perform early stopping if overfitting,
Increase network capacity if underfitting

Reinforcement learning:
What to track?

When is the algorithm “overfitting”?
What regularization to add? 

Does the algorithm ”underfit”, but it 
appears as “overfitting”?



Understanding Optimization Challenges in RL
Bellman equation

1. Train Q-functions by minimizing TD Error:

2. (Optional) Collect new data in the environment by 
rolling out the learned policy

Q-Learning

Gradient descent

Training >=1 step per datapoint leads to 
poor performance

n = 1
n = 4
n = 8

OK, maybe I need to 
prevent overfitting? But training error is high 

with larger n
K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021



Implicit Under-Parameterization
TD Error (Regressing to itself)
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Big network implicitly
behaves as a low-capacity, 

under-parameterized
network

Q�(s,a) = wT��(s,a) ��(s,a) 2 R|S||A|⇥d

Learned features

Gradient descent optimizer

IUP = Feature rank collapse

Rank collapse

More aliasing

Poor performance

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021



Empirical Evidence of Rank Collapse

Rank collapse also strongly corresponds to poor performance!

Also, tells us that RL algorithms learn poor representations!

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021



Why is Implicit Under-Parameterization Bad?
Rank collapse inhibits the ability to 
represent the optimal Q-function

Also leads to increased training TD 
errors in several cases

“Aliasing” effects Lack of expressivity to minimize training loss

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021



What Causes Implicit Under-Parameterization?
Rank decreases only 
with bootstrapping

Does not arise with 
“oracle” Q-target values

“Moving” nature of 
objective is not the cause

Ø Does not happen without bootstrapping

Ø Moving objectives is not the issue, but something specific to bootstrapping is

Ø Using oracle target-values does not lead to rank collapse
K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021



What Causes Implicit Under-Parameterization?

Standard TD error Implicit regularizer

Simplicity bias
….compounded

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021



How Can We Fix Implicit Under-Parameterization?

Intuition: Penalize the disproportionate increase in singular values

Take 1: Address the symptom

Offline RL

But this doesn’t seem fundamental, 
since optimal solutions may 

not have highest rank.

Can we directly address the cause of the issue?

K.*, Agarwal*, Ghosh, Levine. Implicit Under-Parameterization Inhibits Data-Efficient Deep RL. ICLR 2021



Take 2: Understanding Optimization Dynamics
D = {(si, ai, ri, s0i)}Ni=1

Q(s, a) r(s, a) + �Q(s0, a0)

X

(s,a,s0,a0)

�(s, a)>�(s0, a0)
Feature dot products 
increase for unseen 

actions in the backup

“Co-adapted” 
features�(s, a)

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.



Feature Dot Products Increase over Training
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Incorrect  Q-values 
learned eventually; 

dot-products increase 
throughout training

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.



High Feature Dot Products and Performance

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

Return degrades from good solutions Dot products increase, returns decrease

Overall training error is still low!An implicit regularization phenomenon that 
arises when running gradient descent with 

bootstrapping, that leads us to maximize dot 
products of features

X

(s,a,s0,a0)

�(s, a)>�(s0, a0)



How can we reduce this implicit regularization?
Can we add an explicit regularizer to convert this deep RL implicit regularizer to that in SL?

K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

RRL(�) =
X

(s,a,s0,a0)

�(s, a)>�(s0, a0)� ��(s, a)>�(s0, a0)

Instead add this back in 
explicitly!

Our Method (DR3): Add an explicit 
regularizer that minimizes dot 

products

Also mitigates rank collapse!

RSL(�) =
X

(s,a)

�(s, a)>�(s, a)



K. et al. Value-Based Deep RL Requires Explicit Regularization. In preparation, 2021.

Empirical Performance on Offline RL Benchmarks
17 Atari games

2 base offline 
RL methods

Improves both 
stability and 
performance

Stability is very 
important



How can these algorithmic advances guide 
practitioners in debugging and tuning RL 
algorithms on new applications?



A Workflow for Offline Deep RL

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

― Test Loss Validation loss
--- Train loss

# Training steps

Supervised Learning

Lo
ss

 v
al

ue RL?

q Test error different from 
training objective

q Distribution of resulting policy 
different from training dataset

q Increased network capacity doesn’t 
mean better Q-functions

q How should we prevent overfitting?

Let’s say we figure out the above, even then..

We show how we can derive a workflow 
for a sub-class of offline RL algorithms.



A Workflow for Conservative Offline RL

# Training steps

+ Network capacity

+ Capacity  
increasing 

regularization

― Performance

― Performance

+ Capacity 
decreasing 

regularization

Policy selection

― Policy return
--- Dataset Q-value

# Training steps

Overfitting
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― Policy return
--- TD error/ CQL loss
… Optimal return

# Training steps

Underfitting
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• Track Q-values on the 
dataset to measure 
overfitting

• (Early stopping) Stop 
training Q-values start 
decreasing

• Large loss values to 
detect underfitting

Conservative 
Offline RL

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.



Overfitting in Conservative Offline RL
Overfitting

When Q-values start to decrease over training; stop training.
To address overfitting, we can use regularization (e.g., dropout, variational 

information bottleneck on features of the learned network) 

Q-values 
decrease over 

training

With VIB

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.



Underfitting

When training losses are high. In this case, we can use:
1. More expressive networks for the policy architecture

2. DR3 penalty for the critic (and maybe more expressive architectures) 

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.

Underfitting in Conservative Offline RL
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Large TD error 
with base net, 

lower with 
Resnet + DR3

Q-values 
increase over 

training



Tuning Underfitting on Real Robots
Scenario: Sawyer Manipulation tasks

(Place lid on pot, Open Drawer)

9/12

8/12

Tuning underfitting

Tuning underfitting

0/12

0/12

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.



Baseline CQL  (3/9) Baseline CQL + Policy Selection (7/9)

Tuning Overfitting on Real Robots
Scenario: Real WidowX pick & place

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.



Tuning Overfitting on Real Robots

Baseline CQL + Overfitting Correction (VIB) + Early Stopping (8/9)

Scenario: Real WidowX pick & place

K.*, Singh*, Tian*, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. In preparation, 2021.



Summary and Conclusion
Ø Applying deep RL on real and new domains will (most likely) require making it’s behavior 

understandable and amenable to easy tuning

Ø One way to do so is to understand how algorithms behave with neural networks:
v Implicit Regularization of SGD, model class, etc. can hurt
v Can add explicit regularization to tackle this problem.

Ø We should devise workflows (guidelines) for making it easy to use/tune deep RL.
v We devise workflow for some algorithms and find it to work well on 

new, previously untuned problems.

Contact me at: aviralk@berkeley.edu

Work done with Sergey Levine (UC Berkeley), George Tucker (Google), Rishabh Agarwal 
(Google), Dibya Ghosh (UC Berkeley), Anikait Singh (UC Berkeley), Stephen Tian (UC 
Berkeley), Chelsea Finn (Stanford), Tengyu Ma (Stanford), Aaron Courville (MILA) 

Thank You!
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