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Compute costs in Al

Source: OpenAl Blog, Al and Compute

Two Distinct Eras of Compute Usage in Training AI Systems
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Distillation in Deep Learning

Teacher

e Hinton et al. Distilling the Knowledge in a Neural
Network, 2014.

e Transfer learned output probabilities from a large
(possibly ensembled) model to a smaller one

Student
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Source: Knowledge Distillation by U. Upadhyay



https://medium.com/neuralmachine/knowledge-distillation-dc241d7c2322

Dataset Distillation

e Given a dataset, construct a smaller dataset that performs nearly as well as the
original
e Goal: compress knowledge of entire dataset into a few synthetic data points
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Dataset Distillation
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Dataset distillation on MNIST and CIFAR10

Source: Dataset Distillation Project Page



https://ssnl.github.io/dataset_distillation/

Why Distill Dataset?

e Space efficiency
o Data storage
o Especially for nonparametric methods like k-NN, kernel methods

e Compute efficiency
o Accelerate training
o faster hyperparameter, architecture search

e Representational efficiency
o Learn afew prototypical examples instead of requiring many instances



Sneak preview: distilling CIFAR-10
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e 50,000 train images — 10 data points (1img/cls) : Test set accuracy 64%

e outperforms ~128x more natural images




Prior Work |

e Simple baselines (model independent, subset selection)
o Random subset of natural images
o Coresets/instance selection
o k-median, k-means clustering

e Shortcomings
o Rely on heuristics and existence of representative sample
o Not guarantee for downstream task (validation loss)



Prior Work Il

e Training set synthesis
o Dataset distillation (DD): Wang et al., 2018
Soft-label dataset distillation (SLDD): Sucholutsky & Schonlau 2019
Label Distillation (LD): Bohdal et al., 2020
Dataset Condensation (DC): Zhao et al., 2021
Differentiable Siamese Augmentation (DSA): Zhao & Bilen 2021
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Prior Work: Dataset Distillation (DD)

Algorithm 1 Dataset Distillation

Input: p(6o): distribution of initial weights; M the number of distilled data

Input: «: step size; n: batch size; 7": the number of optimization iterations; 7jo: initial value for 7)
1: Initialize X = {&;}}%, randomly, 7} <+ 7jo
2: for each training stept = 1to 7" do

3 Get a minibatch of real training data x: = {xt,j };-1

4 Sample a batch of initial weights 0((,j ) ~ p(6o)

5 for each sampled 65’ do

6: Compute updated parameter with GD: 1) = ) — 5v 60 0(x,65)
7 Evaluate the objective function on real training data: £ = £(x;, 09 ))
8: end for ' .

9: Update X < X —aVx ). L9, and 7} + 7 — aV; D £
10: end for

Output: distilled data x and optimized learning rate 7)

Wang et al., Dataset Distillation, arXiv 2018



Prior Work: Dataset Condensation (DC)
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Zhao et al., Dataset Condensation with Gradient Matching, ICLR 2021




Prior Work: Dataset Condensation with DSA (DSA)
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Infinitely Wide Neural Networks

e Inthe limit of infinite width, neural networks become tractable:

NN with MSE loss  ¢=m) kernel ridge-regression with
corresponding neural kernel

e Neural Network Gaussian Process
(Neal 1996, Lee & Bahri et al. 2018,
¢ Matthews et al. 2018)

e Neural Tangent Kernel
(Jacot et al. 2018)

n — o0

Image credit: Roman Novak



Simplicity in Large Numbers: Neural Networks

Image Credit: Tom Small
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Neural Tangents python software library!

github.com/google/neural-tangents

[Novak & Xiao et al., ICLR 2020] pip install neural-tangents

import neural_tangents as nt

layers = []
layers += [nt.stax.Conv(512, (3, 3), W_std=2.0%%0.5, b_std=0.1), nt.stax.Relu()] * 8
layers += [nt.stax.GlobalAvgPool(), nt.stax.Dense(10, W_std=2.0**0.5, b_std=0.1)]

KC (.’ ) S (.7 )
(NNGP) (NTK)
CPU/GPU /TPU support!



https://github.com/google/neural-tangents

Distill Data for Kernel Ridge-Regression (KRR)

e Closed-form solution: meta-learning becomes first-order optimization

e Given D = (X,,ys), then
Ap(X;) = Kx,x.(Kx.x, + M)y,

where
Kyv = (K(u,v))ucv,vev-

e Expect learned D to transfer well to corresponding finite-width network
for K a neural kernel



Kernel Inducing Points (KIP)

e Given Diypin C P
e Sample targets (X;, y;) from Dipain

e Perform gradient update to support images X
(and possibly labels y)

1
L(Xsays) — §||yt KXt (KX X +>‘I)

e Output: D = (X, ys) adistilled version of Dyyain

ys|®



Kernel Inducing Points Variations

e |earn or fix labels

e Augment targets
o can be very effective, especially when learning w/ labels
e Randomly sample kernel from a family of kernels

o improves generalization across corresponding kernels / NNs

e Initialize inputs from natural images or random noise



Label Solve (LS)

e Minimize L with respect to support labels y,. It’s quadratic!

1
L(Xsays) — §||yt KXt (KX X +)‘I) s”2

e No need for iterative process!



Experiments: Datasets
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e Common Benchmarks: MNIST, Fashion-MNIST, SVHN, CIFAR-10/100
e Distilling to: 1, 10, 50 images/class (except for CIFAR-100)



Prior Work: DC & DSA

Dataset Condensation with Differentiable Siamese Augmentation

Img/Cls Ratio % Coreset S_election ' ; Trainil}fg Set Synthesis Whole Dataset
Random Herding Forgetting DD LD DC DSA

1 0.017 | 649+£3.5 89.2+1.6 35.545.6 60.9+3.2 91.7+0.5 88.740.6

MNIST 10 0.17 |951+0.9 93.7+£03 68.1£3.3 | 79.5£8.1 87.34+0.7 97.44+0.2 97.8+0.1 99.61+0.0
50 0.83 [97.940.2 94.84+0.2 88.2%1.2 - 93.3+0.3 98.8+0.2 99.2+0.1
1 0.017 |514+£3.8 67.0£1.9 42.0%5.5 - - 70.5£0.6 70.610.6

FashionMNIST 10 0.17 |[73.840.7 71.14+0.7 53.942.0 - - 82.3+0.4 84.6+0.3 93.540.1
50 0.83 |825+0.7 71.9+0.8 55.0£1.1 - - 83.61+0.4 88.71+0.2
1 0.014 | 14.6+£1.6 209413 12.1+1.7 - - 31.2+14 27.5+14

SVHN 10 0.14 (351441 505433 16.8+1.2 - - 76.1£0.6 79.2+0.5 95.440.1
50 0.7 709409 72.64+0.8 27.2+1.5 - - 82.3+0.3 84.4+0.4
1 0.02 |144+2.0 21.5+1.2 13.5£1.2 - 25.7+£0.7 28.3+0.5 28.8+0.7

CIFAR10 10 0.2 26.0+1.2 31.640.7 23.341.0 | 36.8+£1.2 383+0.4 44.9+0.5 52.1+0.5 84.8+0.1
50 1 434+1.0 404+0.6 23.3+1.1 - 425404 53.91+0.5 60.6+0.5

Table 1. The performance comparison to coreset selection and training set synthesis methods. This table shows the testing accuracies (%)
of models trained from scratch on the small coreset or synthetic set. Img/Cls: image(s) per class, Ratio (%): the ratio of condensed images
to whole training set. DD and LD use LeNet for MNIST and AlexNet for CIFAR10, while the rest use ConvNet for training and testing.

Img/Cls| Random Herding | LD' DC DSA |Whole Dataset
1 42403 84+03 |11.5+04 12.8+0.3 13.91+0.3 562403
10 |14.6£0.5 17.3£0.3 - 252403 32.3+0.3 ’ ’

Table 2. The performance (%) comparison on CIFAR100 dataset.
LD' use AlexNet for CIFAR100, while the rest use ConvNet.



Results using cheap kernels

e Classical kernels (RBF / Laplace) are cheap and only depend on dot
products: K(zx,z’) is a function of x -z, x - ', 2’ - =’

e Fully-Connected (FC) neural kernels are also dot product kernels

Alg.  Arch., Method 10 100

KRR RBF, KIP 39.9+0.9 49.3+0.3
KRR RBFKIP (a+1) 40.3£0.5 53.8+0.3
KRR FC1, KIP 39.3+1.6 49.1+1.1
KRR FC1,KIP (a+1) 40.5+0.4 53.1+0.5
NN  FC1,KIP 36.2+0.1 45.74+0.3
NN  ConvNet, DC 28.3+0.5 44.9+0.5
NN  AlexNet, DC - 39.1+1.2
NN  AlexNet, SLDD - 39.84+0.8
NN  AlexNet, DD - 36.8+£1.2
KRR FC1 NNGP, LS 27.5+0.3 40.1+0.3

CIFAR-10 Distillation
1 Img/Cls,10 Img/Cls



Architecture —

Dataceteizell Fully-connected CNNs CNNs w/ pooling

0(100)

0(10,000) CIFAR10:

O(1) GPU-hours

0(1,000,000)

Slide credit: Roman Novak



Large-scale Distributed Meta-Learning

e Convolutional kernels more powerful but compute intensive
e Client-Server model of distributed computation

o Both kernel elements and gradients in distributed fashion
e Leverage 100s - 1000s freebie (preemptible, unused) GPUs
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State of the Art on Dataset Distillation

Imgs/ DC! DSA! KIP FC' LS ConvNet?* KIP ConvNet?

Class aug no aug aug
1 91.7+0.5 88.7£0.6 85.540.1 73.4 97.3+0.1 96.5+0.1
MNIST 10 9744+0.2 97.8+0.1 97.2+0.2 96.4 99.1+0.1 99.1+0.1
50 98.84+0.1 99.24+0.1 98.440.1 98.3 99.44+0.1 99.5+0.1
Pahisie 1 70.5+£0.6 70.640.6 - 65.3 82.9+0.2 76.7+0.2
MNIST 10 82.34+0.4 84.6+0.3 - 80.8 91.0+0.1 88.8+0.1
50 83.6+0.4 88.7+0.2 - 86.9 92.4+0.1 91.0+0.1
1 312414 27.5+14 - 23.9 62.44+0.2 64.3+0.4
SVHN 10 76.1+£0.6 79.24+0.5 - 52.8 79.34+0.1 81.1+0.5
50 82.3+0.3 84.4+04 - 76.8 82.0+0.1 84.31+0.1
1 28.3+0.5 28.840.7 40.54+0.4 26.1 64.71+0.2 63.4+0.1
CIFAR-10 10 4494+0.5 52.1+£0.5 53.1+0.5 53.6 75.6+0.2 75.5+0.1
50 53.94+0.5 60.6+0.5 58.64+0.4 65.9 78.24+0.2 80.6+0.1
1 12.84+0.3 .13.9+0.3 - 23.8 34.9+0.1 33.3+0.3
CIEAR-100"  jg 250403 323103 - 39.2 479402 49.5+0.3




Performance Transfers to Finite Neural Networks

Table 2: Transfer of KIP and LS to neural network training. Datasets obtained from KIP and LS
using the ConvNet kernel are optimized for kernel ridge-regression and thus have reduced performance
when used for training the corresponding finite-width ConvNet neural network. Remarkably, the
loss in performance is mostly moderate and even small in many instances. Grayscale datasets use
standard channel-wise preprocessing while RGB datasets use regularized ZCA preprocessing. The
KIP datasets used here, unlike those in Table 1, can have either fixed or learned labels, see § A for
details. * denotes best chosen transfer is obtained with learned labels.

Imgs/Class | DC/DSA || KiPtoNN | P | 1gonn  Perf
change change
1 91.740.5|| 90.1+£01 | 55 | 710402 24
MNIST 10 97.8+0.1|| 975400 | -1.1 | 952401 -12
50 99.240.1|| 983101 | -08 | 979400 -04
1 70.64£06| 735405 | 98 | 612401 4.1
Fashion-MNIST 10 84.6+03|| 868101 | -13 | 797401 -12
50 88.7+0.2| 88.0+01* | -45 | 850+01 -1.8
1 312+14| 573201 | 83 | 238402 -02
SVHN 10 792405 750401 | -1.6 | 532403 04
50 84.4+0.4| 805101 | -1.0 | 765403 -04
1 28.8+07| 499102 | 92 | 24701 -14
CIFAR-10 10 52.1405|| 627403 | -46 | 493401 43
50 60.6:05|| 686102 | -45 | 620402 -39
1 13.94003 || 157402 | -18.1 | 11.8402 -12.0
CIFAR-100 10 3231030 283401 | -17.4 | 250401 -142




Ablation study with CIFAR-10

Table A3: KIP Training for CIFAR-10. Complete set of training options for KIP (whether to use
ZCA regularization, label training, or augmentations) and the corresponding transfer performance to
neural network training (NN column).

Imgs/Class ZCA  Train Labels

Data Augmentation

KIP Accuracy, %

NN Accuracy, %

v v v 63.440.1 48.7+£0.3

v v 64.7+0.2 47.940.1

v v 58.1+0.2 49.5+0.4

1 v 58.5+£0.4 49.9+0.2
v v 55103 34.8+0.4

v 56.41+0.4 36.7+0.5

v 50.1+£0.1 35.3£0.5

50.740.1 38.6+£0.4

v v v 75.540.1 59.4+0.0

v v 75.6+0.2 58.9+0.1

v v 66.5+0.3 62.6+0.2

10 v 67.6+0.3 62.7+0.3
v v 69.3+0.3 45.6+0.1

v 69.6+0.2 47.440.1

v 60.4+0.2 47.7£0.1

61.0+£0.2 49.240.1

v v v 80.6+0.1 64.9+0.2

v v 78.4+0.3 66.1+0.1

v v 71.4+0.1 67.7+0.1

50 v 72.5£0.2 68.6+0.2
v v 74.8+0.3 55.0+£0.1

v 721102 55.8+0.2

v 66.8+0.1 56.1£0.2

67.2+0.2 56.7+0.3

See paper appendix for
ablation on other datasets



(Regularized) ZCA preprocessing

o X € R™*4 dataset

o XT ¢ R¥*™: gtandardized design matrix
e C=XTX=UxUT (SVD)

e Regularization parameter A > O:

1

Wy = Udx(X)UT (whitening matrix)

Regularized ZCA.:

X +— LayerNorm(X).dot(W))



Observation: Intrinsic Dimension Grows with KIP

Dataset

- CIFAR10 FASHION_MNIST MNIST SVHN_CROPPED
o
e Train Labels
2 v
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Figure 7: Intrinsic dimension of learned datasets grows during training. As training progresses
(left to right), intrinsic dimension of the learned dataset grows, indicating that training transforms the
data manifold in a non-trivial way. See Figures A2 and 6 for visual examples of learned images, and
Figures A3 and A4 for similar observations using other dimensionality metrics and/or settings. All
images here have standard preprocessing. Full experimental details in §



KIP & LS well behaved under large-width theory

ConvNet CIFAR-10 (500 support) ConvNet CIFAR-10 ConvNet CIFAR-10
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Figure 3: Variations for neural network transfer. Left: Plot of transfer performance as a function
of KIP training steps across various train settings. Here (a) denotes augmentations used during
KIP training and (a+1) denotes that additionally the labels were learned. MSE and XENT denote
mean-square-error and cross entropy loss for the neural network, where for the case of XENT and
(a+1), the labels for the neural network are the argmax of the learned labels. Middle: Exploring the
effect of width on transferability of vanilla KIP data. Right: The effect of width on the transferability
of label solved data.



NN transfer robust to training hyperparameter choices
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Figure 4: Hyperparameter robustness. In the above, 500 KIP images across eight different check-
points are used to train the ConvNet neural network. Each point in each plot is a neural network
training with a different hyperparameter, and its location records the final test accuracy when training
on natural images versus the KIP images obtained from initializing from such images. For both MSE
and cross entropy loss, KIP images consistently exceed natural images across many hyperparameters.



Conclusion / Future Work

e Conclusion
o KIP & LS with conv architecture achieve SoTA on Dataset Distillation
o Obtained by leveraging infinite-width correspondence
o Implemented distributed meta-learning: OSS learned datasets
m https://github.com/google-research/google-research/tree/master/kip

e Future Work
o Better understanding of learned dataset
o Scaling up for more challenging dataset: ImageNet, non-Image data
m Efficient kernel computation: via sketching? arXiv: 2106.07880
o Applications in privacy or federated learning, ... ?


https://github.com/google-research/google-research/tree/master/kip

Thank you!
Questions?



