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Why Does Learning Rate Influence
Generalization?

Bjorck et al. [2018]



4/40
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Jastrzebski et al. [2017]
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Why Does Learning Rate Influence
Generalization?

"The learning rate is perhaps the most im-
portant hyperparameter. If you have time
to tune only one hyperparameter, tune the
learning rate."

Goodfellow et al. [2014]
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Research Question

Why does optimization impacts generalization in

deep learning?
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Instability in the Early Phase
On the Relation Between the Sharpest Directions of DNN loss and SGD Step

Length, S. Jastrzebski, Z. Kenton, N. Ballas, A. Fischer, Y. Bengio, A. Storkey,
ICLR 2019
The Break-Even Point on Optimization Trajectories of Deep Neural Networks, S.
Jastrzebski, M. Szymczak, S. Fort, D. Arpit, J. Tabor, K. Cho*, K. Geras*, ICLR
2020 (Spotlight)
Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability, J.
Cohen, S. Kaur, Y. Li, J Z. Kolter, A. Talwalkar ICLR 2021
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Hessian of the Training Loss

H(◊) = ˆ2

ˆ◊2L(◊) with a large or small norm (ÎHÎ).
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Covariance of Gradients

K = Cov[gi] with large (left) or small (right) ÎKÎ.

• ⁄i
K
,⁄i
H

will denote the largest eigenvalues of the covariance of gradients (K)
and the Hessian (H).
• Tr(K) = E[Îgi ≠ gÎ2] (variance of gradients).
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How does the Hessian Changes During
Training?

Jastrzebski et al. [2018]
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Visualizing the Early Phase
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Visualizing the Early Phase

Jastrzebski et al. [2018]
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The Role of the Learning Rate is
Counterintuitive.
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Break-Even Point: What Happens When we
Train with Two Learning Rates?

Figure: Visualization of the early part of the optimization trajectories, for SimpleCNN on
the CIFAR-10 dataset. Red is ÷ = 0.1, blue is ÷ = 0.01. The background color indicates the
spectral norm of the covariance of gradients K (⁄1K , left) and the training accuracy (right).
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Novel Implicit Regularization Effects of SGD

Conjecture (Variance reduction effect of SGD)

Along the SGD trajectory, the maximum attained values of ⁄1
H

and ⁄1
K

are smaller

for a larger learning rate or a smaller batch size.

Conjecture (Pre-conditioning effect of SGD)

Along the SGD trajectory, the maximum attained values of
⁄
ú
K

⁄
1
K

and
⁄
ú
H

⁄
1
H

are larger

for a larger learning rate or a smaller batch size.

Both effects hold after a point we call the break-even point, and are desirable
from the optimization perspective, and might help explain generalization of SGD.
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Variance Reduction and Pre-Conditioning
Effects

Figure: The variance reduction and the pre-conditioning effect of SGD, on ResNet-32.
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Increasing Batch Size ∆ Larger Variance of
Gradients!

.

Figure: Using a larger batch size not only decreases the variance of the mini-batch gradient,
but also increases the variance of the example gradient. The two effects compound.
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LCA Shows Training is Unstable

Lan et al. [2019]
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Summary

Optimization tends to steer towards increasingly sharp regions
of the loss surface, which ultimately destabilizes optimization.

Selected implications:
• Large learning rate improves conditioning of the loss surface.
• Small batch size reduces the variance of gradients!
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Catastrophic Fisher Explosion

Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization,
Jastrzebski et al, ICML 2021
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Hypothesis

Instability of the early phase of training is key for

the mechanism behind implicit regularization effects

in SGD.
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How to Test Such a Hypothesis?

The Hessian can be approximated using the Fisher

matrix. Let g = Ò◊L(x, y; ◊).

H(◊) ¥ F(◊) = Ex≥X ,ŷ≥p◊(y|x)[g(x, ŷ)
Tg(x, ŷ)]

Tr(H) ¥ Tr(F) =E ÎgÎ2|
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Fisher Penalty

Notation: (xb, yb) - minibatch, ◊, L(xb, yb; ◊),

ŷb

Definition (Fisher Penalty)

L(xb, yb; ◊) + –ÎÒ◊L(xb, ŷb; ◊)Î

Possible to compute at ¥ 3x compute time using
“double-backprop”, or at ¥ 2x compute time using a finite
difference approximation.
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Fisher Penalty Recovers Generalization Gap

Setting ÷ú Baseline GPx GP FP GPr

TinyImageNet 54.67% 52.57% 52.79% 56.44% 56.73% 55.41%

CIFAR-100 66.09% 58.51% 62.12% 64.42% 66.41% 66.39%
CIFAR-100 45.86% 36.86% 45.26% 47.35% 49.87% 48.26%
CIFAR-100 53.96% 46.38% 58.68% 57.68% 57.05% 58.15%

CIFAR-10 76.94% 71.32% 75.68% 75.73% 79.66% 79.76%

Table: Using a 10-30x smaller learning rate (Baseline) results in up to 9% degradation in
test accuracy on popular image classification benchmarks. Adding FP closes the gap to ÷ú.
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Why Does Fisher Penalty Help?

Hypothesis: Catastrophic Fisher explosion (large FIM in the
early phase) promotes memorization instead of learning pat-
terns in the dataset.
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SGD is biased towards learning simple patterns

Arpit et al. [2017]
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Fisher Penalty Disproportionally Slows Down
Learning on Random Labels
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Fisher Penalty Disproportionally Slows Down
Learning on Random Labels

Label Noise Setting Baseline Mixup GPx FP GPr

25% CIFAR-100 41.74% 52.31% 45.94% 60.18% 58.46%
CIFAR-100 53.30% 61.61% 52.70% 58.31% 57.60%

50% CIFAR-100 30.05% 39.15% 34.26% 51.33% 50.33%
CIFAR-100 43.35% 51.71% 42.99% 47.99% 50.08%
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Related Work and Outlook
Related findings can be found in two works:
• Concurrent work titled Sharpness Aware Minimization Foret et al. [2021] , see

also Smooth-Out, proposes an approximated penalty of the Hessian. Fisher
Penalty is closely related. Our key contribution is proposing and corroborating
a causal mechanism between changes in geometry and generalization. Our goal
is not to propose an effective regularizer.

• On the Origin of Implicit Regularization in Stochastic Gradient Descent Smith
et al. [2021] is most closely related. While the final explicit regularizer is
similar, the proposed causal explanation is different and focuses on the
instability in the early phase. Our empirical evaluation suggests Fisher Penalty
is more effective than gradient norm penalty proposed in the work. However,
more work is necessary to discern which causal explanation is more relevant for
the success of deep neural networks.
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Summary
1. Key properties, such as conditioning, of the loss surface are

regularized by SGD beyond the break-even point.

2. Instability of the early phase of training is key for the
mechanism behind implicit regularization effects in SGD. We
derive Fisher Penalty that simulates implicit regularization
due to large ÷ in SGD, and connect its effect to memorization.
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Fun Facts

If these don’t sound absurd, you have understood the talk. If not, it is most likely
my fault, and please ask questions :)
• Using large learning rates effectively acts as preconditioning of the loss surface

past a certain point on the trajectory (break-even point).
• Small batch-size both increases and decreases the variance of gradients.
• The ability to avoid memorization by SGD is strongly modulated by the

learning rate (but is mainly due to the early phase of training effects).



34/40

Thank you for your attention!
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Appendix: Optimization vs K: A (Poor)
Theoretical Argument

H(◊ú) ¥ F(◊ú) ¥ K(◊ú), if
• At the minimum (◊ú).
• The model is well-specified.

• The mean gradient is small compared to the

variance of the gradient.
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