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Distributional Generalization:
A New Kind of Generalization



Setting: Supervised classification 𝑥, 𝑦 ∼ 𝐷

Objects:
Classifiers (NN, decision trees,…):    𝑓:𝒳 → 𝒴
Learning Procedures (SGD,…): (𝒳 ×𝒴)!↦ 𝑓

Q: Often study only Test Error. Can we hope to know more about 𝑓?
(eg: many ways to get 40% error…)

𝒜train samples 
𝑧!, 𝑧", 𝑧#…

classifier 𝑓

Motivation



Setting: Supervised classification 𝑥, 𝑦 ∼ 𝐷

Objects:
Classifiers (NN, decision trees,…):    𝑓:𝒳 → 𝒴
Learning Procedures (SGD,…): (𝒳 ×𝒴)!↦ 𝑓

This talk: Generalization beyond error…

𝒜train samples 
𝑧!, 𝑧", 𝑧#…

classifier 𝑓

Motivation



Experiment

Distribution on (𝑥, 𝑦):
𝑥 ∼ { random CIFAR-10 image }
𝑦|𝑥 ~ Bernoulli( type(x) / 10)      

Sample n=50K from this distribution.
Train a ResNet to interpolation, 
to predict 𝑓:𝒳 → 𝒴

Q: What happens at test time?

A: ~Same distribution!

Type: 0 1 2 … 93



We use a method for classification.
We don’t get a good classifier: high test error!

We get an approximate sampler:
𝑓 𝑥 ∼ 𝑝 𝑦 𝑥)

Happens for:
- Interpolating neural networks
- Interpolating kernel regressors
- Interpolating decision trees

Large generalization gap. But “distributional generalization”
Classical generalization insufficient language.

Best thought of as samplers. 

1
0 1

0



Locality?
Classifier sensitive to subclass-structures

1-Nearest-Neighbors (in a well-clustered space) 
would have the same behavior.

… but why do ResNets?



Distributional Generalization (informal):

“ Test and train outputs of classifiers are close as distributions ”



Distributional Generalization

Classical Generalization Feature Calibration Agreement Property

[Definition]

[Conjecture] [Conjecture]TrainError 𝑓 ≈ TestError(𝑓)

Distributional Generalization (informal):

“ Test and train outputs of classifiers are close as distributions ”



Classical Framework of Generalization 

𝔼 ", $% ∼'%&'() 𝕝 1𝑦 ≠ 𝑦 𝑥 ≈ 𝔼 ", $% ∼'%*+,[ 𝕝 1𝑦 ≠ 𝑦 𝑥 ]

Error()*+,-./ 𝑓 ≈ Error(.0/ 𝑓

Expectation of the same function under different distributions.
T!"" 𝑥, /𝑦 ≔ 𝕝 /𝑦 ≠ 𝑦 𝑥

⇕

predicted label true label

Joint Distributions: 𝐷#"$%&, 𝐷#!'( over 𝒳 ×𝒴

Classical Generalization:



Classical Framework of Generalization 

𝔼 ", $% ∼'%&'() 𝕝 1𝑦 ≠ 𝑦 𝑥 ≈ 𝔼 ", $% ∼'%*+,[ 𝕝 1𝑦 ≠ 𝑦 𝑥 ]

Error()*+,-./ 𝑓 ≈ Error(.0/-./ 𝑓

To sample from 𝐷#"$%&:

- Sample TrainSet ∼ 𝐷&
- Train classifier 𝑓 ← Learn(TrainSet)
- Sample train pt 𝑥 ∼ TrainSet
- Output (𝑥, 𝑓 𝑥 )

⇕

To sample from 𝐷#!'(:

- Sample TrainSet ∼ 𝐷&
- Train classifier 𝑓 ← Learn(TrainSet)
- Sample test pt 𝑥 ∼ 𝐷
- Output (𝑥, 𝑓 𝑥 )

classifier output true label

Classical Generalization:



Distributional Generalization

Defn. A trained classifier 𝑓 satisfies classical generalization if:
𝔼 ", $% ∼'%&'() 𝑇.))(𝑥, 1𝑦) ≈ 𝔼 ", $% ∼'%*+,[𝑇.)) 𝑥, 1𝑦 ]

Defn. A trained classifier 𝑓 satisfies distributional generalization for a family of tests 𝒯
𝒯 ⊆ {𝑇:𝒳 × 𝒴 → 0, 1 }

if
∀𝑇 ∈ 𝒯 ∶ 𝔼 ", $% ∼'%&'() 𝑇(𝑥, 1𝑦) ≈ 𝔼 ", $% ∼'%*+,[𝑇 𝑥, 1𝑦 ]

Ex: 1. 𝒯 = 𝑇)** ⟺ classical generalization
2. 𝒯 = {𝑎𝑙𝑙 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑡𝑒𝑠𝑡𝑠}⟺ TV-closeness



Distributional Generalization

Defn. A trained classifier 𝑓 satisfies classical generalization if:
𝔼 ", $% ∼'%&'() 𝑇.))(𝑥, 1𝑦) ≈ 𝔼 ", $% ∼'%*+,[𝑇.)) 𝑥, 1𝑦 ]

Defn. A trained classifier 𝑓 satisfies distributional generalization for a family of tests 𝒯
𝒯 ⊆ {𝑇:𝒳 × 𝒴 → 0, 1 }

if
∀𝑇 ∈ 𝒯 ∶ 𝔼 ", $% ∼'%&'() 𝑇(𝑥, 1𝑦) ≈ 𝔼 ", $% ∼'%*+,[𝑇 𝑥, 1𝑦 ]

“Train and Test outputs are close as distributions”
Intuition
(DG):



Interpolating Classifiers
Special case of Distributional Generalization:

for interpolating 
classifiers

Distributional 
Generalization



PART I: Feature Calibration



Roadmap

We want to formalize the closeness:
𝑥, 𝑓 𝑥 ≈ (𝑥, 𝑦)

Claim: For some “good” partitions 𝐿:𝒳 → 𝑀 ,
𝐿(𝑥), 𝑓 𝑥 ≈#+ (𝐿(𝑥), 𝑦)

Which partitions are “good”?
- Depends on architecture, distribution, num 

samples…
- Intuitively, “partitions which can be learnt”

x is “coarsened” into a partition L(x)



Conjecture (informal):

Marginal distributions of 𝒇(𝒙) and 𝒚 match,
when conditioned on any “good” subgroup 𝑳 𝒙 ∈ {𝟎, 𝟏}

What is a “good” subgroup?
- Subgroups which are themselves learnable

- Many “good subgroups”! (cats, animals, objects,…)

- Training procedure doesn’t know about subgroups... 

Feature Calibration

Eg: 𝑝 𝑓 𝑥 𝑥 ∈ 𝐶𝐴𝑇) ≈ 𝑝(𝑦 | 𝑥 ∈ 𝐶𝐴𝑇)



Definition: Distinguishable Feature
Given: Training procedure ℱ, distribution 𝑥, 𝑦 ∼ 𝒟,
num train samples n.

Defn: An 𝜖, ℱ, 𝒟, 𝑛 -distinguishable feature is a labeling
𝐿:𝒳 → 𝑀 of the domain 𝒳 that is learnable to test accuracy 
≥ 1 − 𝜖.

eg: L: X → {cat, dog, plane…} 
is a ResNet-distinguishable feature for 
CIFAR with n=50K samples.

L: X → {animal, object} is an MLP-dist
feature

1. Sample unlabeled 𝑥1 ∼ 𝐷!.
2. Label as 𝑦1 ≔ 𝐿(𝑥1)
3. Train classifier 𝑓 ← Trainℱ( 𝑥1 , 𝑦1 )
4. Check Test Accuracy: Pr

"∼'
𝑓 𝑥 = 𝐿 𝑥 ≥ 1 − 𝜖



Main Conjecture: Feature Calibration

Conjecture: For all natural distributions 
𝒟, family of interpolating models ℱ, and 
train samples 𝑛 ∈ ℕ the following holds.

Let 𝑓 ← Trainℱ 𝒟! be a trained 
classifier. Then
∀ 𝜖, ℱ, 𝒟, 𝑛 -distinguishable features 𝐿:
𝐿 𝑥 , 𝑓 𝑥 "∼𝒟 ≈4 𝐿 𝑥 , 𝑦 ",%∼𝒟

compare to: 𝑥, 𝑓 𝑥 ≈ (𝑥, 𝑦)



Main Conjecture: Feature Calibration

Conjecture: For all natural distributions 
𝒟, family of interpolating models ℱ, and 
train samples 𝑛 ∈ ℕ the following holds.

“Marginal distributions of f(x) and y match,
when conditioned on any distinguishable-feature L”

Eg: 𝑝 𝑓 𝑥 𝑥 ∈ 𝐶𝐴𝑇) ≈ 𝑝(𝑦 | 𝑥 ∈ 𝐶𝐴𝑇)



Main Conjecture: Feature Calibration

Remarks:

- Train one interpolating classifier f. Holds 
"automatically" for all distinguishable 
features L.

- Formally true for ℱ = 1-Nearest-
Neighbors.

- Statement of density approximation:

𝒇(𝒙) “looks like” sample from 𝒑(𝒚|𝒙)

Conjecture: For all natural distributions 
𝒟, family of interpolating models ℱ, and 
train samples 𝑛 ∈ ℕ the following holds.

“Marginal distributions of f(x) and y match,
when conditioned on any distinguishable-feature L”

Eg: 𝑝 𝑓 𝑥 𝑥 ∈ 𝐶𝐴𝑇) ≈ 𝑝(𝑦 | 𝑥 ∈ 𝐶𝐴𝑇)



Experiments to test Conjecture 1:

All experiments: Pick a distribution 𝒟, 
model ℱ, and distinguishable feature 𝐿.

Compute joint distribution
(𝐿(𝑥), 𝑓(𝑥)) vs. (𝐿(𝑥), 𝑦) on test set.

L(x) := CIFAR-10 class of x

Joint distribution (L(x), y) and (L(x), f(x))

(𝐿 𝑥 , 𝑓 𝑥 ) ≈! (𝐿 𝑥 , 𝑦)



ResNets on CIFAR-10: Arbitrary Confusion Matrix



RBF kernel on MNIST (λ=0)

L L

y f(x
)



Decision Trees on UCI "Decision trees ≈ adaptive nearest-neighbors"



For deterministic distributions 

Consider "constant feature" 𝐿 𝑥 = 0 in the conjecture (𝐿 𝑥 , 𝑓 𝑥 ) ≈4 (𝐿 𝑥 , 𝑦)

Conjecture ⇒ Interpolating classifiers have the right marginal distribution of labels: 
𝒑(𝒇(𝒙)) ≈ 𝒑(𝒚)



ImageNet: Image classification. 1000-classes, 116 dogs.

AlexNet (𝑓) gets 56% test accuracy.

Does it at least classify dogs as some type of dog?
- Yes! (98% acc). High accuracy when ”zoomed out”

- Predicted by our conjecture:

“IF AlexNet could learn to classify dogs vs. not-dogs
(when trained on this binary task),
THEN AlexNet will classify most dogs as dogs
(when trained on 1000-class ImageNet)”

- Even “bad” classifiers (w.r.t. test error),
can have “good” hidden structure

Beyond Error

Golden retriever
Poodle

Germ
an Shepard (not dogs)

𝑥:

𝑓(𝑥):



1. “Overfitting is not always benign”
Fitting noise in train set à Noise at test time

2. “Interpolating neural networks
are NOT consistent”

Theory Implications



Overparameterized Limit: (data << model)

lim
-→/

lim
0→/

𝑓-,0 (𝑥) ∼ 𝑝(𝑦|𝑥)

Underparameterized Limit: (data >> model)

lim
0→/

lim
-→/

𝑓-,0 (𝑥) = argmax1𝑝 𝑦 𝑥)

Theory Implications

1
0 1

0

Fit the (noisy) train set.

Train Set = Test Set. 



Implications for Ensembling

Observation: Ensembling helps a lot for distributions with label noise.

"Explanation":
Single classifier approximates samples from conditional density:

⇒ Ensemble of classifiers approximate argmax:



Non-Interpolating Models



Non-interpolating classifiers
Distributional generalization intuition:

“behavior on train set ≈ behavior on test set” 



Non-interpolating classifiers
Distributional generalization intuition:

WideResNet-28-10 on CIFAR-10 w/ label noise

y

class(x)

Train Set 

“behavior on train set ≈ behavior on test set” 









Classical generalization fails. DG holds.



MNIST+RBF, varying regularization

Train Set: 

Test Set: 



Summary of Connections/Significance
Implicit Bias: Many models with same train and test errors. Which one do we get?

This work: A “universal implicit bias” of interpolating models.
Structural constraints on the learnt classifier.

Benign Overfitting: Are interpolating models = “smooth part + benign interpolating part”?
This work: No, interpolation can hurt. Noise in train à noise in test.

Classical Generalization:
This work: DG can hold when classical generalization fails.
Even poorly-generalizing functions have predictable structure.

Fairness: 



Fairness Implications
Setup: Distribution D on (X, Y).
Suppose there is a “protected attribute” R(x) e.g. Race

Assume that R(x) is independent of Y(x) on the distribution.

Train classifier F to predict Y from X.

Q: Will F(X) be independent of R(X)?



Confusion Matrix Implications
For standard interpolating methods on balanced binary classification tasks:

(False Positive Rate) ≈ (False Negative Rate)

is it true?



PART II: Agreement Property



Agreement Property
Experiment:

- Take two classifiers, trained on disjoint train sets, each with accuracy ~50% 
on a 10-class problem.

- What is the probability they agree with each other on test set?



Agreement Property

Experiment:

- Take two classifiers, trained on disjoint train sets, each with accuracy ~50% 
on a 10-class problem.

- What is the probability they agree with each other on test set?



Experiments



Agreement Property
Claim (informal): For all natural classifiers and distributions,
the test accuracy of a classifier 𝑓5 is close to its agreement probability with an 
independent, identically-distributed classifier 𝑓6

* Special case of Distributional Generalization



Experiments



Experiments





Structure of Confusion Matrices
Claim (*speculation): For interpolating, independent and identically-trained 
classifiers f5, f6 (iid), the joint densities:

𝑓5 𝑥 , 𝑦 ≈ 𝑓5 𝑥 , 𝑓6 𝑥
as joint distributions over 𝒴 ×𝒴.

Implies:
- Agreement Property (trace):

- Confusion matrix is symmetric
- Confusion matrix is PSD

https://arxiv.org/pdf/1710.06501.pdf

https://arxiv.org/pdf/1710.06501.pdf


Limitations

- Conjectures not fully-specified: for which classifier families & distributions do 
they hold?

- Tested various “natural” choices, but lacking formal conditions

- Ensembles fail conjecture: Deep Ensembles, Random Forests, K-NN

- Sometimes slight deviations from predicted behavior

- No theoretical understanding beyond 1-NN

This work: First step in the study of Distributional Generalization



Conclusion
- Introduced "distributional generalization": fine-grained characterization of 

the outputs of classifiers (beyond just test error)

- Several concrete instantiations: Feature Calibration, Agreement Property

- Holds in a variety of domains {neural-nets, kernels, decision-trees}
More robust than classical generalization

- Hope: Deeper understanding of interpolating methods.
Open questions abound... Thanks!

preetum@cs.harvard.edu



EXTRAS



1-Nearest-Neighbor obeys Conjecture



Formal Definition

Distributional Generalization:

For interpolating classifiers:

Defn:



Equivalently:“Marginals f(x), y close within each part of partition”

(𝐿 𝑥 , 𝑓 𝑥 ) ≈! (𝐿 𝑥 , 𝑦)
⟺ For typical ℓ: 𝑝 𝑓 𝑥 𝐿 𝑥 = ℓ) ≈ 𝑝 𝑦 𝐿 𝑥 = ℓ)



Connection/Significance
Special case of Indistinguishability:
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Special case of Indistinguishability:



Connection/Significance
Special case of Indistinguishability:



ResNets on CIFAR-10
Label noise: 20% of plane → car on train set

⇒ roughly 20% plane → car on test set.

And for varying values of "20%":


