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Outline

Context: sparse deep networks and the goal of sparse training
Sparse training vs (?) subspace training

DCTpS: computationally efficient random subspace training
Some results

Limitations and open questions
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Sparse Deep Networks

+ ‘Sparse’ deep learning can refer to multiple different things
(See Hoefler et al' for a full review).

* Here we consider persistent (fixed for all inputs) sparsity of the weights

No 7 NS/ Sparsify weight
\'lA’ A\QIA‘ 4\'1 matrices/tensors
—/
Input x € X Zi Output y € Y Input z € X Zq Output y € Y
ianT
f 5 an urin "Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and
i OXFORD Institute 9 training in neural networks” 2021




Sparse Deep Networks

« Deep networks are most-often vastly over parameterised. Parameter counts now range
from O(10°) to O(10**)!

*  We have known for a long time that we can "prune” most of these while maintaining
good accuracy

Huge storage and computational savings (in theory at least)
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*  We have known for a long time that we can "prune” most of these while maintaining
good accuracy

Huge storage and computational savings (in theory at least)

* The most consistently successful methods: pruning during and/or after training
(followed by some fine tuning) — e.g. Iterative Magnitude Pruning
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Sparse Deep Networks

« Deep networks are most-often vastly over parameterised. Parameter counts now range
from O(10°) to O(10**)!

*  We have known for a long time that we can "prune” most of these while maintaining
good accuracy

Huge storage and computational savings (in theory at least)

* The most consistently successful methods: pruning during and/or after training
(followed by some fine tuning) — e.g. Iterative Magnitude Pruning

« Can we prune before training? So storage and compute is cheaper during training too?

Gaaxd) UNIVERSITY OF The .
Alan Turing
Institute

‘=Y OXFORD



Static sparse training’

» Naive (uniform) random sparsification performs poorly at extreme
sparsities
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Static sparse training’

» Naive (uniform) random sparsification performs poorly at extreme
sparsities

* The lottery ticket hypothesis (Frankle and Carbin, 2019):

A randomly-initialized, dense neural network contains a subnetwork that is
initialized such that—when trained in isolation—it can match the test accuracy
of the original network after training for at most the same number of

iterations.
G UNIVERSITY OF ThAel Turi
Sew an urin
& OXFORD Institute 9 - We will touch on Dynamic Sparse Training at the end



https://arxiv.org/pdf/1803.03635.pdf
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Static sparse training’

» Naive (uniform) random sparsification performs poorly at extreme
sparsities

* The lottery ticket hypothesis (Frankle and Carbin, 2019):

So &0 UNIVERSITY OF The

. Alan Turin
Institute g - We will touch on Dynamic Sparse Training at the end

=’ OXFORD



https://arxiv.org/pdf/1803.03635.pdf

Static sparse training’

» Naive (uniform) random sparsification performs poorly at extreme
sparsities

* The lottery ticket hypothesis (Frankle and Carbin, 2019):

A randomly-initialized, dense neural network contains a subnetwork that is
initialized such that—when trained in isolation—it can match the test accuracy
of the original network after training for at most the same number of
iterations.

* How to find trainable, extremely sparse sub-networks in practice?
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Pruning at initialization (Pal)
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Pruning at initialization (Pal)

Saliency scores

The for each weight
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Pruning at initialization (Pal)
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Pruning at initialization (Pal)
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Standard Pruning At Initialisation (Pal)

Generic steps:

1.

= W B

Initialize a dense network

Define scalar objective K

OR

Calculate vector of saliency scores G(w) = — GOw

ow

Prune parameters with lowest scores

— L
OL(W)
. — . T [
SOTA FORCE: G(wW)=|—/——"0OWw SynFlow?: R =1 | | w1
at Extreme = ow 1—1
Spa rsities W is the param vector post-pruning lwllis the element-wise absolute value of the parameters in the [t layer
The " de Jorge, Pau, et al. "Progressive skeletonization: Trimming more fat from a network at initialization.” 2020 &
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Pruning at initialization (Pal)

How important are these saliency scores at initialization?

1. After Pal we can often reshuffle the locations of the
weights within layers and still train to the same accuracy?

o The 2 Frankle et al. Pruning Neural Networks at Initialization: Why Are We Missing the Mark? ICLR2021
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Pruning at initialization (Pal)

How important are these saliency scores at initialization?

1. After Pal we can often reshuffle the locations of the
weights within layers and still train to the same accuracy?

2. Results from other literature on low effective
dimensionality in network training

o The 2 Frankle et al. Pruning Neural Networks at Initialization: Why Are We Missing the Mark? ICLR2021
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Zooming out again...

Static

Sparse
Training
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Subspace Training

Fixed (untrainable)
offset

!
Network weights w=d -+ U@ Trainable parameters

| f I t |

Fixed Subspace embedding

w,d € RY
feR* k<< N
U e RV*K
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Subspace Training

zero vector

!
Sparse Networks: w=d+ U6
!

"k-sparse disjoint”:
* 1 non-zero per column
* < 1 non-zero per row

Pal = Finding the right such U
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Subspace Training

Randomly sampled

7\

(Dense) low-dimensional w=d+Uf
networks? : B

U ~ e.g. Gaussian
d ~ standard NN init

Excellent performance with extremely
few trainable parameters...
but still dense

— 2 Lj, Chunyuan, et al. "Measuring the Intrinsic Dimension of Objective Landscapes." International
Swusd UNIVERSITY OF The Y o : P

< @l - . Conference on Learning Representations. 2018
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Interlude: a “Trend”?

* A Generalized Lottery Ticket Hypothesis, Alabdulmohsin, Tolstikhin et al. 2021

“We introduce a generalization to the lottery ticket hypothesis in which the notion of “sparsity”
is relaxed by choosing an arbitrary basis in the space of parameters.”

* How many degrees of freedom do we need to train deep networks: a loss
landscape perspective, Larson et al, 2021

“recent works, spanning pruning, lottery tickets, and training within random subspaces, have
shown that deep neural networks can be trained using far fewer degrees of freedom than the
total number of parameters”
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Where were we...

Accuracy: random subspace >> “random pruning” subspace

Compute/Storage: random subspace << “random pruning” subspace

Try and get the best of both worlds: efficiency of sparse nets with random subspace selection.
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Where were we...

Accuracy: random subspace >> “random pruning” subspace

Compute/Storage: random subspace << “random pruning” subspace

Try and get the best of both worlds: efficiency of sparse nets with random subspace selection.

Important features:

1. Random subspace training — Offset from the origin
2. Random subspace training & pruning at init — “Layer-wise
distribution” of trainable parameters.
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Best of both: Dense for the Price of Sparse
w=d+ Ub

|

Dense but fixed (untrainable)

"k-sparse disjoint”:
* 1 non-zero per column
* < 1 non-zero per row
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DCT plus Sparse

w=d+Ubf Each weight matrix -

W=D +S (Ddense, §sparse)

Setting D to be the discrete-cosine-
— 4+ [o-0100 transform matrix, then

= Wz = DCT(z) + Sx
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DCT plus Sparse

w=d+Ubf Each weight matrix -

W=D +S (Ddense, §sparse)

Setting D to be the discrete-cosine-
— 4+ [o-0100 transform matrix, then

= Wz = DCT(z) + Sx

T

- ~ * No storage
« O(nlogn) compute
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DCT plus Sparse

w=d+Ubf Each weight matrix -

W=D +S (Ddense, §sparse)

Setting D to be the discrete-cosine-
— 4+ [o-0100 transform matrix, then

= Wz = DCT(z) + Sx
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DCT plus Sparse

w=d+Ubf Each weight matrix -

W=D+ (Ddense, §sparse)

Setting D to be the discrete-cosine-
— 4+ [o-0100 transform matrix, then

= Wz = DCT(x) + Sx

\_ _J (We also add single trainable scaling param for DCT:)

= Wx = aDCT(x) + Sx
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DCT plus Sparse

w=d+Ub —  Distribution of 1-sparse rows
~N_ () —

Distribution of trainable parameters
across and within .S matrices
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DCT plus Sparse

w=d+Ub —  Distribution of 1-sparse rows
N —

Distribution of trainable parameters
across and within .S matrices

— + [Pt T "Equal per layer” (EPL):
k
7 trainable params in each S
* Locations in .S uniformly random
- ~ * No initialization of the dense net
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DCT plus Sparse

A Accuracy Computational Cost Network Size on Device
P = 0.01 0.001 0.0001 | At init. Training Final At init. Training Final
Random -119%  -66% -66% 0 O(pmn) O(pmn) O(PN) O(PN) O(PN)
IMP +0.8% -7.1%  -64.8% 0 Omn) L  Opmn) ON) ON)LH  O(PN)
O(pmn) O(PN)
FORCE -6.6% -269% -62.4% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)
SynFlow -62% -31.6% -60.4% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)
RigL (ERK) +0.4% -16.8% -65.7% 0 O(pmn + O(pmn) O(PN) O(PN) O(PN)
ﬁmn)
DCTpS -5.8% -15%  -22.8% 0 O(qlogg+ O(qlogg+ O(PN) O(PN) O(PN)
pmn) pmn)
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DCT plus Sparse

A Accuracy Computational Cost Network Size on Device
P = 0.01 0.001 0.0001 | At init. Training Final At init. Training Final
Random -119%  -66% -66% 0 O(pmn) O(pmn) O(PN) O(PN) O(PN)
IMP +0.8% -7.1%  -64.8% 0 Omn) L  Opmn) ON) ON)LH  O(PN)
O(pmn) O(PN)
FORCE -6.6% -269% -62.4% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)
SynFlow -62% -31.6% -60.4% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)
RigL (ERK) +04% -16.8% -65.7% 0 O(pmn + O(pmn) O(PN) O(PN) O(PN)
ﬁmn)
DCTpS -5.8% -15%  -22.8% 0 O(qlogg+ O(qlogg+ O(PN) O(PN) O(PN)
pmn) pmn)
W e R™*"
q = max(m,n)
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DCT plus Sparse

A Accuracy Computational Cost Network Size on Device

P = 0.01 0.001 0.0001 | At init. Training Final At init. Training Final

Random -119%  -66% -66% 0 O(pmn) O(pmn) O(PN) O(PN) O(PN)

IMP +0.8% -7.1%  -64.8% 0 Omn) L  Opmn) ON) ON)LH  O(PN)
O(pmn) O(PN)

FORCE -6.6% -269% -62.4% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)

SynFlow -62% -31.6% -60.4% O(mnk) O(pmn) O(pmn) O(N) O(PN) O(PN)

RigL (ERK) +04% -16.8% -65.7% 0 O(pmn + O(pmn) O(PN) O(PN) O(PN)
ﬁmn)

DCTpS -5.8% -15%  -22.8% 0 O(qlogg+ O(qlogg+ O(PN) O(PN) O(PN)

pmn) pmn)

P = Global density
N = Total Network Params
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Interlude: a “Trend”?

.
Doping: A technique for efficient compression of

LSTM models using sparse structured additive \
matrices, Thakker et al, 2021

Sparse Matrix

v
~ -

Kronecker Product 3\
olo|olo 0|6
1|2 0|3 olo|o]o 42
+| ® rt ofojojo| 0|12
7 ~\ 7
B c p olo 0(‘ 3 /- 8"‘ 7
wk Ws \-’\\\\\ w’—"f_’
Key difference:
Needs to be

trained and stored
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Dynamic Sparse Training

e Static sparse training chooses support set of w, then keeps fixed during training.
e DST instead jointly optimises topology and weights, subject to fixed sparsity level

e Start sparse, then: Train, Prune, Regrow, Repeat.
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Dynamic Sparse Training

e Static sparse training chooses support set of w, then keeps fixed during training.
e DST instead jointly optimises topology and weights, subject to fixed sparsity level

e Start sparse, then: Train, Prune, Regrow, Repeat.




Combining with Dynamic Sparse training

Straightforwardly combined o Apply DST to the sparse,
with DCTpS: Wz = DCT(:B) +@E

trainable matrices in each layer
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Combining with Dynamic Sparse training

Where are connections initialized?
Which to prune?
Which to regrow?

Where can they regrow?
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Combining with Rig-L'

v

Initialise all W; as modified Erdos Reyni random bipartite
graph, (Details not NB)

Where are connections initialized?

v

Which to prune? Smallest Magnitude

v

Which to regrow? Largest magnitude gradient

v

Within the same layer

Where can they regrow?

R The
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'Evci et al. “Rigging the Lottery: Making All Tickets Winners”, 2020



Some Results

MobileNetV2 on CIFAR10 ResNet50 on CIFAR1T00
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Without Batchnorm

FixUpResnet110 on CIFAR10
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% trainable kernel parameters
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Other support distributions?

"Equal per Filter” (EPF)

(A version of N:M sparsity)

The
AlanTuring
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ResNet50

VGG19

Accuracy

1.0

o o
o @

Accuracy

o
=

o
o

CIFAR10 CIFAR100
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—e— DCTpS (EPL) —eo— Random (EPL) —e—  Random (Uniform) «— DCTpS (EPF)




Limitations

« Computational floor imposed by the DCT — can push storage, not compute,
down to the extremes. Q: more efficient ways to achieve an appropriate offset?
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Limitations

« Computational floor imposed by the DCT — can push storage, not compute,
down to the extremes. Q: more efficient ways to achieve an appropriate offset?

* Gains are hardware and implementation dependent — so far these are gains “in
theory”

Gasd UNIVERSITY OF The

Alan Turing
5 OXFORD [t




Limitations

« Computational floor imposed by the DCT — can push storage, not compute,
down to the extremes. Q: more efficient ways to achieve an appropriate offset?

* Gains are hardware and implementation dependent — so far these are gains “in
theory”

* Does not speak to the more general question about how best to use
parameters (sparser, larger net vs denser, smaller net, etc)
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Limitations

« Computational floor imposed by the DCT — can push storage, not compute,
down to the extremes. Q: more efficient ways to achieve an appropriate offset?

* Gains are hardware and implementation dependent — so far these are gains “in
theory”

* Does not speak to the more general question about how best to use
parameters (sparser, larger net vs denser, smaller net, etc)

* Shrinks the storage footprint of the network — but the hidden representations
are not sparse and can be very large (same for all sparse nets)
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Thank you

Reach out on ilan.price@maths.ox.ac.uk or @llanPrice
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Compared with Random Subspace?

Lenet-5 on CIFAR-10

0.6
> 0.5
©
LS.
3
O 04 /
©
S FORCE
-.g 0.3 —e— Random (EPL)
= —e— Random (Uniform)
© —e— SynFlow
> 0.2 : oo
—e— Hyperplane Projection
./0_0-“0—/—0— DCTpS
500 1000 1500 2000 2500 3000
Number of trainbale parameters
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What if we fixed a ?

CIFAR10

-
o

o
©

ResNet50
Accuracy
®

©
~

0.6 1 | | 1 | |
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DCTpS Convolutional Layers

vﬂ

EIEIENEN

g |etls

S [ [l e
.:lj »:-lj .:lj .:lj

Forward pass Backprop

Gy UNIVERSITY OF The .
) Alan Turing
Institute




When is training possible?

CIFAR10

ResNet50
Accuracy

0.01% 0.10% 1.00% 5.00%
% trainable kernel parameters

DCTpS FORCE SynFlow EPL Uniform
[ o

1.2x10* t-q —— o~ i e
1.15x 10! 15 . — 107 — 10!

1.1x10?! 10716 . 1077
1.05x 10 107

1 10726 10712
10 » —-—
9.5x10° 10 107
9x10°
5 10 5 10 5 10 5 10 5 10
Singular Values Singular Values Singular Values Singular Values Singular Values
\—0— Any trainable density —— 1.0% —— 0.5% 0.1% 0.05% —e— 0.02% —— 0.01% |

Jacobian Spectra
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