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Neural Architecture Search: Definition

• A search space 𝒜
• Different types of layers.
• Different topologies.
• Different widths / depths.

• Goal: find an architecture a* from 𝒜 s.t. 𝑓 can be maximized.
• A search (optimization) algorithm

• Sample one architecture from the space.
• Evaluate it’s value (accuracy, loss, etc.).
• Find a next better sampling.
• Reinforcement Learning, Evolution, Differentiable Search, etc.

• Evaluation: train a* from scratch.
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NAS Heavily Counts on Architecture Evaluation

• Training based evaluation
• High computation cost & slow!
• Proxy evaluation: early stopping, weight sharing, etc.
• Train another predictor network to predict architecture’s performance.

• How to optimize NAS at network’s initialization w.o. any training?
è Significantly reduce the NAS search cost.

• Can we define how to evaluate in NAS by analyzing the trainability & 
expressivity of architectures?
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Analysis of NN’s Trainability & Expressivity @ Init

• Trainability: can NN be easily optimized by Gradient Descent?
• Any gradient vanishing/explosion?
• Any overfitting to training set / easy classes?

• Expressivity: can NN represent complex functions?
• Trainability: ResNet > Vgg
• Expressivity: Vgg vs. ResNet (?)
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Trainability via Condition Number of NTK
Strong Correlation w.r.t. Accuracy
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Jacobian:

Network training dynamics[1]:

NTK condition number[2]:
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Expressivity via #Linear Regions
Strong Correlation w.r.t. Accuracy 

• Number of Linear Regions[1] = Number of unique ReLU activation 
patterns under given input samples[2].
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𝜿𝑵 v.s.𝑹𝑵: Different Operator Preference

• 𝜅,: more skip-connect
è easier to train

• 𝑅,: conv1x1
è stronger expressivity
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TE-NAS: Training-free & Label-free Efficient NAS

• Prune a supernet by ranking the importance of operators.
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TE-NAS: Training-free & Label-free Efficient NAS

• Prune a supernet by ranking the importance of operators.
• First improve supernet’s trainability è then preserve expressivity.
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Fast & Accurate: NAS-Bench-201 & DARTS Space
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Thank you!
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Code Paper
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