

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective

Wuyang Chen, Xinyu Gong, Zhangyang Wang

UT Austin

https://github.com/VITA-Group/TENAS

Neural Architecture Search: Definition

- A search space ${\mathcal A}$
 - Different types of layers.
 - Different topologies.
 - Different widths / depths.
- Goal: find an architecture a* from \mathcal{A} s.t. f can be maximized. $a^* = \arg \max f(a)$
- A search (optimization) algorithm
 - Sample one architecture from the space.
 - Evaluate it's value (accuracy, loss, etc.).
 - Find a next better sampling.
 - Reinforcement Learning, Evolution, Differentiable Search, etc.
- Evaluation: train a* from scratch.

 $a \in \mathcal{A}$ $f: \mathcal{A} \subset \mathbb{R}^n o \mathbb{R}$

^[1] Dong, Xuanyi, and Yi Yang. "Nas-bench-201: Extending the scope of reproducible neural architecture search." *ICLR 2020*.

Neural Architecture Search: Definition

- A search space ${\mathcal A}$
 - Different types of layers.
 - Different topologies.
 - Different widths / depths.
- Goal: find an architecture a* from \mathcal{A} s.t. f can be maximized. $a^* = \arg \max f(a)$
- A search (optimization) algorithm
 - Sample one architecture from the space.
 - Evaluate it's value (accuracy, loss, etc.).
 - Find a next better sampling.
 - Reinforcement Learning, Evolution, Differentiable Search, etc.
- Train a* from scratch.

[1] Dong, Xuanyi, and Yi Yang. "Nas-bench-201: Extending the scope of reproducible neural architecture search." *ICLR 2020*.

NAS Heavily Counts on Architecture Evaluation

- Training based evaluation
 - High computation cost & slow!
 - Proxy evaluation: early stopping, weight sharing, etc.
 - Train another predictor network to predict architecture's performance.
- How to optimize NAS at network's initialization w.o. any training?
 → Significantly reduce the NAS search cost.
- Can we define *how to evaluate* in NAS by analyzing the trainability & expressivity of architectures?

Analysis of NN's Trainability & Expressivity @ Init

- Trainability: can NN be easily optimized by Gradient Descent?
 - Any gradient vanishing/explosion?
 - Any overfitting to training set / easy classes?
- Expressivity: can NN represent complex functions?
- Trainability: ResNet > Vgg
- Expressivity: Vgg vs. ResNet (?)

Trainability via Condition Number of NTK Strong Correlation w.r.t. Accuracy

depth evolve as linear models under gradient descent." Neurips 2019. [2] Xiao, L., Pennington, J., & Schoenholz, S. "Disentangling trainability and generalization in deep learning." ICML 2020.

https://github.com/VITA-Group/TENAS

200000

400000

NTK $\kappa = \frac{\lambda_{max}}{\lambda_{max}}$

(CIFAR-100)

Accuracy 62.2

Test 60.0

57.5

80

Kendall-tau = -0.42

800000

600000

NTK $\kappa = \frac{\lambda_{max}}{\lambda_{max}}$

100

120

Expressivity via #Linear Regions

Strong Correlation w.r.t. Accuracy

 Number of Linear Regions^[1] = Number of unique ReLU activation patterns under given input samples^[2].

[1] Hanin, B., & Rolnick, D. "Complexity of linear regions in deep networks." ICML 2019.

[2] Xiong, H., Huang, L., Yu, M., Liu, L., Zhu, F., & Shao, L. "On the number of linear regions of convolutional neural networks." ICML 2020

https://github.com/VITA-Group/TENAS

κ_N v.s. R_N : Different Operator Preference

- κ_N : more skip-connect
 - ➔ easier to train
- R_N : conv1x1
 - → stronger expressivity

TE-NAS: Training-free & Label-free Efficient NAS

• Prune a supernet by ranking the importance of operators.

TE-NAS: Training-free & Label-free Efficient NAS

- Prune a supernet by ranking the importance of operators.
- First improve supernet's trainability → then preserve expressivity.

```
Algorithm 1: TE-NAS: Training-free Pruning-based NAS via Ranking of \kappa_N and \hat{R}_N.
 1 Input: supernet \mathcal{N}_0 stacked by cells, each cell has E edges, each edge has |\mathcal{O}| operators, step t = 0.
 2 while \mathcal{N}_t is not a single-path network do
          for each operator o_i in \mathcal{N}_t do
 3
                                                                                 \triangleright the higher \Delta \kappa_{t,o_i} the more likely we will prune o_i
                 \Delta \kappa_{t,o_{j}} = \kappa_{\mathcal{N}_{t}} - \kappa_{\mathcal{N}_{t} \setminus o_{j}}
                \Delta R_{t,o_j} = R_{\mathcal{N}_t} - R_{\mathcal{N}_t \setminus o_j}
                                                                                 \triangleright the lower \Delta R_{t,o_i} the more likely we will prune o_i
 5
          Get importance by \kappa_{\mathcal{N}}: s_{\kappa}(o_j) = index of o_j in descendingly sorted list [\Delta \kappa_{t,o_1}, ..., \Delta \kappa_{t,o_{|\mathcal{N}_i|}}]
 6
          Get importance by R_{\mathcal{N}}: s_R(o_j) = index of o_j in ascendingly sorted list [\Delta R_{t,o_1}, ..., \Delta R_{t,o_{|\mathcal{N}_i|}}]
 7
          Get importance s(o_i) = s_{\kappa}(o_i) + s_R(o_i)
 8
          \mathcal{N}_{t+1} = \mathcal{N}_t
 9
          for each edge e_i, i = 1, ..., E do
10
                j^* = \arg\min_i \{s(o_j) : o_j \in e_i\}
                                                                          \triangleright find the operator with greatest importance on each edge.
11
                \mathcal{N}_{t+1} = \mathcal{N}_{t+1} \setminus o_{j^*}
12
          t = t + 1
13
14 return Pruned single-path network \mathcal{N}_t.
```


https://github.com/VITA-Group/TENAS

Fast & Accurate: NAS-Bench-201 & DARTS Space

Table 1: Comparison	with state-of-the-art NAS methods on NAS-Bench-201. Test accuracy with mean and	1
deviation are reported.	"optimal" indicates the best test accuracy achievable in NAS-Bench-201 search space.	

Architecture	CIFAR-10	CIFAR-100	ImageNet-16-120	Search Cost (GPU sec.)	Search Method
ResNet (He et al., 2016)	93.97	70.86	43.63	-	-
RSPS (Li & Talwalkar, 2020)	87.66(1.69)	58.33(4.34)	31.14(3.88)	8007.13	random
ENAS (Pham et al., 2018)	54.30(0.00)	15.61(0.00)	16.32(0.00)	13314.51	RL
DARTS (1st) (Liu et al. 2018b)	54.30(0.00)	15.61(0.00)	16.32(0.00)	10889.87	gradient
DARTS (2nd) (Liu et al. 2018b)	54.30(0.00)	15.61(0.00)	16.32(0.00)	29901.67	gradient
GDAS (Dong & Yang, 2019)	93.61(0.09)	70.70(0.30)	41.84(0.90)	28925.91	gradient
NAS w.o. Training (Mellor et al. 2020)	91.78(1.45)	67.05(2.89)	37.07(6.39)	4.8	training-free
TE-NAS (ours)	93.9(0.47)	71.24(0.56)	42.38(0.46)	1558	training-free
Optimal	94.37	73.51	47.31	-	-

Table 2. Comparison with state-or-the-art 1445 methods on Ch14K-10.						
Architecture	Test Error (%)	Params (M)	Search Cost (GPU days)	Search Method		
AmoebaNet-A (Real et al., 2019)	3.34(0.06)	3.2	3150	evolution		
PNAS (Liu et al., 2018a)*	3.41(0.09)	3.2	225	SMBO		
ENAS (Pham et al., 2018)	2.89	4.6	0.5	RL		
NASNet-A (Zoph et al. 2018)	2.65	3.3	2000	RL		
DARTS (1st) (Liu et al., 2018b)	3.00(0.14)	3.3	0.4	gradient		
DARTS (2nd) (Liu et al., 2018b)	2.76(0.09)	3.3	1.0	gradient		
SNAS (Xie et al. 2018)	2.85(0.02)	2.8	1.5	gradient		
GDAS (Dong & Yang 2019)	2.82	2.5	0.17	gradient		
BayesNAS (Zhou et al. 2019)	2.81(0.04)	3.4	0.2	gradient		
ProxylessNAS (Cai et al., 2018) [†]	2.08	5.7	4.0	gradient		
P-DARTS (Chen et al.) 2019)	2.50	3.4	0.3	gradient		
PC-DARTS (Xu et al., 2019)	2.57(0.07)	3.6	0.1	gradient		
SDARTS-ADV (Chen & Hsieh, 2020)	2.61(0.02)	3.3	1.3	gradient		
TE-NAS (ours)	2.63(0.064)	3.8	0.05^{\ddagger}	training-free		

Table 2: Comparison with state-of-the-art NAS methods on CIFAR-10.

* No cutout augmentation.

[†] Different space: PyramidNet (Han et al., 2017) as the backbone.

[‡] Recorded on a single GTX 1080Ti GPU.

Table 3: Comparison with state-of-the-art NAS methods on ImageNet under the mobile setting.

Anchitosturo	Test Error(%)		Params	Search Cost	Search
Aremitecture	top-1	top-5	(M)	(GPU days)	Method
NASNet-A (Zoph et al., 2018)	26.0	8.4	5.3	2000	RL
AmoebaNet-C (Real et al., 2019)	24.3	7.6	6.4	3150	evolution
PNAS (Liu et al. 2018a)	25.8	8.1	5.1	225	SMBO
MnasNet-92 (Tan et al., 2019)	25.2	8.0	4.4	-	RL
DARTS (2nd) (Liu et al., 2018b)	26.7	8.7	4.7	4.0	gradient
SNAS (mild) (Xie et al. 2018)	27.3	9.2	4.3	1.5	gradient
GDAS (Dong & Yang 2019)	26.0	8.5	5.3	0.21	gradient
BayesNAS (Zhou et al. 2019)	26.5	8.9	3.9	0.2	gradient
P-DARTS (CIFAR-10) (Chen et al., 2019)	24.4	7.4	4.9	0.3	gradient
P-DARTS (CIFAR-100) (Chen et al., 2019)	24.7	7.5	5.1	0.3	gradient
PC-DARTS (CIFAR-10) (Xu et al. 2019)	25.1	7.8	5.3	0.1	gradient
TE-NAS (ours)	26.2	8.3	6.3	0.05	training-free
PC-DARTS (ImageNet) (Xu et al., 2019) [†]	24.2	7.3	5.3	3.8	gradient
ProxylessNAS (GPU) (Cai et al. 2018)	24.9	7.5	7.1	8.3	gradient
TE-NAS (ours) [†]	24.5	7.5	5.4	0.17	training-free

[†] The architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-100.

Thank you!

