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The ubiquity of deep neural networks

● Deep neural networks are an essential component of most modern machine learning 
systems, such as:

○ Reinforcement Learning agents playing games
○ Machine translation systems and language models
○ Vision systems
○ Speech recognition
○ Search and recommendation systems
○ etc

● While practitioners have come up with many heuristic innovations to make them 
train faster at higher depths, theory has been relatively slow to catch up, and is rarely 
able to make an impact on practice



Current state of affairs

● Fast training of deep nets requires some combination of:

○ normalization layers (e.g. Batch Normalization [BN], Layer Normalization)

○ skip connections

○ specific choices for activation functions (e.g. ReLU, SELU)

● These come with various problems:

○ mechanism of action not well understood

○ not clear how to use them in new architectures

○ BN causes issues by sharing information over the batch

○ skip connections impose constraints on model specification

○ more speculatively: these techniques may be acting as a crutch, and our reliance on 
them could be holding us back from pushing DL theory and practice to the next level



Our contributions

● We develop Deep Kernel Shaping (DKS), a general automated framework for 
transforming neural networks models to make them easier to train

● DKS enables rapid training of networks that are traditionally considered 
hard/impossible to train, including:

○ very deep vanilla convnets (without BN layers or skip connections)

○ networks with unpopular activation functions (e.g. tanh or softplus)

○ your new proposed model goes here

● We also provide a comprehensive explanation for why things like ReLUs, BN layers 
and skip connections speed up training, and show how DKS makes them 
unnecessary (see the paper)



Network architecture assumptions

● DKS supports:

○ fully-connected, convolutional, pooling, element-wise nonlinear, weighted sum, 
and layer norm layers

○ Gaussian fan-in and orthogonal initializations (of the “Delta” type)

○ most types of weight sharing, such as in RNNs

○ arbitrary topologies with branches, multiple heads, etc

● Simplifying assumptions for this talk: 

○ only fully-connected, element-wise nonlinear, and sum layers

○ network input vectors     have norm 



Private & ConfidentialKernel function approximations for randomly 
initialized networks
● Let f(x) be the vector output for our network, given input x. At initialization, it turns 

out that we can closely approximate both

                      

● Approximated quantities are called q values and c values (resp.), and they are 
computed using Q maps and C maps:

and

Approximation 
becomes exact as 
layer widths grow

using only knowledge of the network’s structure and the 3 scalar quantities:

and,



Computing Q and C maps 

● Q and C maps for linear layers are just the identity function. For a nonlinear layer f 
with activation      they are given by:

● To compute Q and C maps for whole networks, we compute them for component 
subnetworks and then compose:

● Weighted sum operations are handled using:



C map degeneration in deep networks
● C maps determine the angles between output vectors as a function of the angle 

between input vectors (subject to approximation error)

● In deep networks, C maps can easily become “degenerate”, so that information 
about input angles is obscured:



Degenerate C maps imply difficult training

● The degenerate C maps seen in deep networks will squash entire ranges of input c 
values tightly around some output value

● There are two basic cases for this, both of which are bad for training:

○   .         : output vectors look “random”,  and generalization is impossible. Early layers 
will have huge gradients compared to later layers.

○             : all output vectors are essentially identical. Gradients of early layers vanish, 
and loss surface becomes very ill-conditioned.

● This is formalized in the paper using NTK theory



A previous solution: Initializing on the Edge of Chaos 
(EOC) (Schoenholz et al., 2016)

● One solution to this problem is to require                    for each nonlinear layer f  

● This is accomplished by setting the variance of the initial weights and biases

● This slows the asymptotic convergence of c values (to 1) with depth

● Unfortunately, given a deep enough network they will still be pretty close to 
fully-converged, meaning that the network’s C map will still be degenerate

● For example, unmodified deep ReLU networks already satisfy the EOC condition (as 

long as the biases are zero), but they still have degenerate C maps (as seen in previous 

slide). Indeed, deep ReLU networks still require skip connections and BN layers to 
work well in practice



A new way to control C map properties

● C maps are convex on         . Intuitively, this allows us to control the overall deviation 
of the C map from the identity by controlling the deviation of              from 1, assuming    
.               . (A rigorous argument is given in the paper.)



More rigorously…



A different failure mode: networks that are “nearly linear”

● We require non-degenerate C maps for training to go well, but this isn’t always 
enough

● Linear networks have nice C maps but their model class is very limited

● “Nearly linear” networks also have nice C maps, but may be hard to optimize 

e.g. for each ReLU activation, add 1010 to its input and subtract 1010 from 
its output

Model class is technically the same as a standard ReLU network, but 
optimizer will struggle to find nonlinear behavior



Target Q/C map properties

● In DKS we will enforce the following properties:

a)                     for all subnetworks f                

b)                     for all subnetworks f                controls kernel approximation error

c)                     for all subnetworks f

d)                     for all subnetworks f  for a moderate 

e)                     is maximized               prevents “nearly linear” networks

● For (a), (b) & (c), it’s good enough to have them hold for all nonlinear layers (and to 
“normalize” any weighted sums in the network)

● For (d) & (e), it’s sufficient that                      for each nonlinear layer f, where  .    is 
special constant we can compute from the model architecture

prevents C map 
degeneration

standardizes map computations across 
layers, prevents issues with huge/tiny 
inputs to final loss



Transforming activation functions

● To achieve these conditions, we introduce non-trainable scale and shift constants 
(for both input and output) to each activation function:

● Because careful choices for weights and biases can simulate the same thing, this 
won’t change the model class

Examples:



Consequences of using DKS on the NTK

● The Neural Tangent Kernel tells us a lot about how a network will behave under 
gradient descent training

● Is an exact theory in the wide layer limit

● The following theorem describes the effect on using DKS on the NTK function       :



Experimental setup

● We trained a ResNet-101-V2 style architecture on Imagenet, with and without Batch 
Normalization layers and skip connections

● Batch size was 512 

● Learning rate schedules were optimized dynamically using FIRE PBT (Dalibard et al., 
2021) to maximize optimization speed

● Other optimization hyperparameters were lightly tuned

● Lots of additional experiments and ablations in the paper



Vanilla networks w/ DKS compared to ResNets (K-FAC)



Vanilla networks w/ DKS compared to ResNets (SGD)



Networks with skip connections and DKS (K-FAC)



Networks with skip connections and DKS (SGD)



The effect of different optimizers on vanilla networks w/ DKS



The effect of different optimizers on networks w/ DKS + skip 
connections



Comparisons to EOC



Comparisons to Looks Linear



Limitations
● Multiplicative units (as in Transformers) are not supported, but an extension in future 

work seems possible

● Vanilla networks using DKS seem to generalize worse than standard ResNets, 
although this has been largely addressed in follow-up work submitted to ICLR 2022

● To match the training speed of ResNets using purely vanilla networks we currently 
require K-FAC. With SGD we require at least 2x more iterations

Outlook
● DKS could be a useful tool for:

○ unlocking new model classes,

○ enable existing models that have optimization issues to train better,

○ elimination of deep learning “tricks” like batch normalization and skip 
connections where these cause problems, or can’t be used.
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