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Oversmoothing in  
neural autoregressive modeling
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Language modeling

• Setup:


• , where  with  a set of all unique tokens.


• The length  may vary from one sequence to another.


•  includes a special symbol , and  for any .


• Goal:


• Build a model (parametrized by ) that computes a probability .


• A reasonable  receives a high probaiblity

Y = (y1, y2, …, yL) yl ∈ V V

L ∈ {1,2,3,…}

V ⟨eos⟩ yL = ⟨eos⟩ Y

θ p(Y; θ)

Y
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Language modeling is fascinating
because language is a fascinating way to encapsulate ideas

• Relation extraction


• Barak Obama was the 44th president of the United States.


• Common-sense reasoning


• Jane performed an emergency surgery on John, because John was in a car accident.


• Question-answering


• Wikipedia is a free content, multilingual online encyclopedia written and maintained by a community 
of volunteers through a model of open collaboration, using a wiki-based editing system.


• Machine translation


• “뉴욕대학교는 뉴욕시에 위치한 사립대학교이다.” is in English “New York University is a private university 
located in New York City.”
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Language modeling is fascinating
because language is a fascinating way to encapsulate ideas

• All these problems can be solved by solving





• So, all we need is a language model.

arg max
ymissing

log p([yobserved, ymissing]; θ)
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Autoregressive language modeling

• (Closely related) properties of language modeling


• We deal with variable-length sequences.


• Each element within a sequence is from a finite set of unique tokens.
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Autoregressive language modeling

• Autoregressive modeling





• One classifier is used over and over


• It can handle sequences of varying length.


• It is compositional (rather simple one, though.)


p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)
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Autoregressive 
language modeling
• Autoregressive modeling 




• A natural choice for language 
modeling since 1950

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)

7[Shannon, 1950]



Autoregressive 
language modeling
• Autoregressive modeling 




• A natural choice for language 
modeling since 1950.


• Extended to a neural version in 2001.

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)

8

[Bengio et al., 2003]



Autoregressive 
language modeling
• Autoregressive modeling 




• A natural choice for language modeling since 1950.


• Extended to a neural version in 2001.


• Infinite-context version in 2011:


• This is when things got so much more 
interesting.

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)
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[Mikolov et al., 2011]



Autoregressive 
language modeling
• Autoregressive modeling 




• A natural choice for language 
modeling since 1950.


• A neural version in 2001.


• Infinite-context version in 2011.


• Now: the war of “# parameters”

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)
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Microsoft
Already outdated

This is a bit ridiculous that we are spending so many scientists on this war, though…



Neural autoregressive language modeling

• Language modeling is reduced to text classification: 


• Target 


•
Input 


• Model parameters 


p(yt |y1, …, yt−1; θ)

yt ∈ V

(y1, …, yt−1) ∈ V × ⋯ × V
t−1

θ
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Autoregressive language modeling

• Two natural ways to build this classifier  


• A recurrent network: LSTM, GRU, etc.


• Pros: constant memory/computation in the forward pass


• Cons: difficult learning and inherent sequential processing


• An attention network: transformers, etc.


• Pros: highly parallel processing and easy learning


• Cons: linear memory/computation in the forward pass

p(yt |y1, …, yt−1; θ)
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Cho et al. [2014]

Vaswani et al. [2017]
But, this is not what I want to talk about it today…



Training a language model

• Language modeling is reduced to text classification: 


• For learning, we use cross-entropy:


• Entropy: expected negative log-probability under the same distribution


• Cross-entropy: expected negative log-probability under a different distribution


p(yt |y1, …, yt−1; θ)

−∑
y∈V

p*(y |x)log p(y |x; θ)
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[Shannon, 1950]



Training a language model
almost exactly like training a classifier

• For training a language 
model, we use cross-
entropy which is the 
upperbound to entropy.


• In other words, training a 
language model is find a 
distribution that matches 
the inherent entropy of 
natural language.

14



Training a language model
Almost exactly like training a classifier

• Overall, the loss function is





• Almost like training a classifier, but not quite.


• Examples  are highly correlated within each sequence .


• Highly correlated, because they come from the same text.

𝔼Y∼D [
|Y|

∑
t=1

log p(yt |y<t; θ)] ≈
1
N

N

∑
n=1

|Yn|

∑
t=1

log p(yn
t |yn

<t; θ)

(yn
<t, yn

t ) Yn

But, it turned out no one really cares about this… ugh…



Taking a step back …

• Setup:


• , where  with  a set of all unique tokens.


• The length  may vary from one sequence to another.


•  includes a special symbol , and  for any .


• Goal:


• Build a model (parametrized by ) that computes a probability .


• A reasonable  receives a high probaiblity

Y = (y1, y2, …, yL) yl ∈ V V

L ∈ {1,2,3,…}

V ⟨eos⟩ yL = ⟨eos⟩ Y

θ p(Y; θ)

Y
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If <eos> wasn’t there …

• A prefix  is always more likely than the full sequence :





• because the probability is bounded from above by 1.


• Weird…

y1:t y1:T

p(y1)p(y2 |y1)⋯p(yt |y<t) ≥ p(y1)p(y2 |y1)⋯p(yt |y<t)⋯p(yT |y<T)
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But, <eos> is here …

• <eos> saves us from this weird behaviour.


• Any valid sequence ends with <eos>.


• A prefix  is always more likely than the full sequence :


• Instead of a prefix , consider a premature sequence 


y1:t y1:T

y1:t y1:t+⟨eos⟩

p(y1)p(y2 |y1)⋯p(yt |y<t)p(⟨eos⟩ |y≤t) ? p(y1)p(y2 |y1)⋯p(yt |y<t)⋯p(yT |y<T)
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But, <eos> is here …

• A prefix  is always more likely than the full sequence :


• Instead of a prefix , consider a premature sequence 





• The probability of a premature seq. should be lower than the full sequence:





• In other words, as long as <eos> is highly unlikely after a prefix, the premature 
sequence can be less probable than the full sequence. 

y1:t y1:T

y1:t y1:t+⟨eos⟩

p(y1)p(y2 |y1)⋯p(yt |y<t)p(⟨eos⟩ |y≤t) ? p(y1)p(y2 |y1)⋯p(yt |y<t)⋯p(yT |y<T)

p(y1)p(y2 |y1)⋯p(yt |y<t)p(⟨eos⟩ |y≤t) ≤ p(y1)p(y2 |y1)⋯p(yt |y<t)p(yt+1 |y<t+1)⋯p(yt |y<t)⋯p(yT |y<T)
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Oversmoothing rate

• Given a sequence , we check how often the inequality is 
violated:





• It counts how many premature seq.’s are more probable than the full seq.


• We want this oversmoothing rate to be small ( ) in natural language.

y = (y1, y2, …, yT)

r(y) =
1
T

T

∑
t=1

I (p(⟨eos⟩ |y<t) >
T

∏
t′ =t

p(yt′ 
|y<t′ 

))
≈ 0
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Oversmoothing rate is high!

21



Oversmoothing rate is high!

• It is not enough to simply lower  when .


• i.e., it is not enough to treat it as a series of independent classification.


•  must be lowered below .


• i.e., we must take into account the sequence structure.

p(⟨eos⟩ |y<t) yt ≠ ⟨eos⟩

p(⟨eos⟩ |y<t)
T

∏
t′ =t

p(yt′ 
|y<t′ 

)
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Minimizing the oversmoothing rate

• The oversmoothing rate is not easy to minimize





• because it is an average of 0-1 losses (piece-wise constant.) 

r(y) =
1
T

T

∑
t=1

I (p(⟨eos⟩ |y<t) >
T

∏
t′ =t

p(yt′ 
|y<t′ 

))
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T

∏
t′ =t

p(yt′ 
|y<t′ 

) − p(⟨eos⟩ |y<t)



Oversmoothing loss

• A convex relaxation with a piece-wise linear loss and margin :
m ≥ 0

o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) − log
T

∏
t′ =t

p(yt′ 
|y<t′ 

))
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max (0,m + log p(⟨eos⟩ |y<t) − log
T

∏
t′ =t

p(yt′ 
|y<t′ 

))
m



Oversmoothing loss

• A convex relaxation with a piece-wise linear loss and margin :





• Minimizing  ensures <eos> is scored low when it is not supposed 
to show up: we treat <eos> specially within a sequence.


• Maximizing  ensures the model does not focus too much on the 

earlier tokens but also emphasize the tokens in the latter part of a sequence.

m ≥ 0

o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) −
T

∑
t′ =t

log p(yt′ 
|y<t′ 

))
log p(⟨eos⟩ |y<t)

T

∑
t′ =t

log p(yt′ 
|y<t′ 

)
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We can lower the oversmoothing rate.
Dramatically!
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What happens under the hood?

• The log-probability of an incorrectly 
place <eos> decreases dramatically.
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o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) −
T

∑
t′ =t

log p(yt′ 
|y<t′ 

))



What happens under the hood?

• The effect is however much more  
visible when we look at their rank.


• The rank is what matters when 
we consider approximate decoding.
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Welleck et al. (2020)



But, it doesn’t hurt nor improve modeling

• This implies that 


• MLE has ambiguity in modeling <eos>


• Oversmoothing loss selects a solution 
that avoids the issue of oversmoothing
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Oversmoothing in the wild
Koehn & Knowles in 2016

• Better search (larger beam) leads  
to worse translation.


• Worse translations tend to be  
dramatically shorter.
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Let’s take a quick step back …



Oversmoothing in the wild
Stahlberg & Byrne in 2019

• For many source sentences, the most probable translations are empty!
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Oversmoothing in the wild
Post-hoc fixes

• Length penalty during decoding [Cho et al., 2014; Wu et al., 2016; …]
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[Cho et al., 2014] [Wu et al., 2016]



Oversmoothing in the wild
Post-hoc fixes

• Learned length penalty [Murray & Chiang, 2018]
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Oversmoothing in the wild
Post-hoc fixes

• Length penalty is a bandage and does not get to the heart of the problem.


• Of course.. we just did 😉
34

Shi et al. [2020]

Let’s now come back to our method.



Length degeneracy disappears

• Strong regularization of oversmoothing removes the issue of length degeneracy


• Even without using any length penalty during beam search
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Oversmoothing vs. translation quality
• With highly approximate search (beam5), no impact on translation quality.


• With less approximate search (beam1000), we observe significant 
improvement in translation quality with lessened oversmoothing


• Mostly from ruling out unreasonably short translations.
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Problem solved … ?
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Obviously not … :(



Oversmoothing
Positive news

• Carefully determined/defined the issue of oversmoothing:





• Carefully designed a loss function to alleviate this issue: 





• Experimentally demonstrated the effectiveness of this oversmoothing loss.

r(y) =
1
T

T

∑
t=1

I (p(⟨eos⟩ |y<t) >
T

∏
t′ =t

p(yt′ 
|y<t′ 

))

o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) − log
T

∏
t′ =t

p(yt′ 
|y<t′ 

))
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Oversmoothing
Negative news

• BUT, translation quality has not improved.

• AND, better translations are still found by more approximate search

• Beam search with a small beam


• Mystery continues … 

• How is beam search finding those high-quality but not 

necessarily most probable translations from our model?

39 Fin.


