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Language modeling

o Setup:
e Y =0, ---,¥7), Where y, € V with V a set of all unique tokens.
« Thelength L € {1,2,3,...} may vary from one sequence to another.

» Vincludes a special symbol (€0s), and y; = (eos) for any Y.

e Goal:
» Build a model (parametrized by 6) that computes a probability p(Y; 6).

» A reasonable Y receives a high probaiblity
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Language modeling is fascinating

because language is a fascinating way to encapsulate ideas

e Relation extraction

 Barak Obama was the 44th president of the United States.

« Common-sense reasoning
* Jane performed an emergency surgery on John, because John was in a car accident.
* Question-answering

 Wikipedia is a free content, multilingual online encyclopedia written and maintained by a community
of volunteers through a model of open collaboration, using a wiki-based editing system.

e Machine translation

o “FEOSINE FEAI0| 2|X|EH AFRICHSHWOICE” is in English “New York University is a private university
located in New York City.”




Language modeling is fascinating

because language is a fascinating way to encapsulate ideas

* All these problems can be solved by solving

alrg madx lOg P ([}7 observeds Y missing] ; ‘9)

y missing

* S0, all we need is a language model.



Autoregressive language modeling

* (Closely related) properties of language modeling
* We deal with variable-length sequences.

 Each element within a sequence is from a finite set of unique tokens.



Autoregressive language modeling

» Autoregressive modeling

L
p(v;0) = | | pO 11013 0)
=1

e One classifier is used over and over
* |t can handle sequences of varying length.

* |t is compositional (rather simple one, though.)



Autoregressive
language modeling

» Autoregressive modeling

L
p(¥;0) = | | pO1y1-1:0)
=1

* A natural choice for language
modeling since 1950

2. ENTROPY CALCULATION FROM tmr STATISTICS OF ENGLISH

One method of calculating the entropy // 1s by a series of approximations
7?7 F,, F2> """, which successively take more and more of the statistics

-

;)f the language into account and approach // as a limit. 7y may be called
the y_gram entropy; it measures the amount of information or entropy due
to statistics extending over .\ adjacent letters of text. /'y is given by!

FN = ‘"Z P(bz‘;j)log? P%U)
= =2 p(bi,7) logs p(bs, 7) + Z p(b) log p(b:)

in which: bi is a block of V-1 letters [(\-1)-gram]
j is an arbitrary letter following &;

p(b;, j) is the probability of the N-gram b;,j

(1)

#s:(7) 1s the conditional probability of letter j after the block &,
and is given by p(d;, j)/p(b:).

The equation (1) can be interpreted as measuring the average uncertainty
(conditional entropy) of the next letter /' when the preceding V-1 letters are
known. As .\" is increased, /7y includes longer and longer range statistics
and the entropy, /7, is given by the limiting value of Fyas V—» = :

H = Lim Fy. (2)
N—w0

The .\ -gram entropies £ v for small values of N can be calculated from
standard tables of letter, digram and trigram fr(:qucn(:ics.2 [f spaces and
punctuation are ignored we have a twenty-six letter alphabet and /; may
be taken (by definition) to be logs 26, or 4.7 bits per letter. /1) involves letter

frequencies and 1s given by
26

Iy = —X) p(1) log. p(4) = 4.14 bits per letter. (3)

[Shannon, 1950] Pl



Autoregressive
language modeling

» Autoregressive modeling

L
p(Y;0) = Hp(yt [ V1:4-150)
=1

* A natural choice for language
modeling since 1950.

e Extended to a neural version in 2001.

i-th output = P(w; = i | context)
softmax
_e®® --- e ___ --- 000
7
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. aCross words
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[Bengio et al., 2003]



Autoregressive
language modeling

—

» Autoregressive modeling

CONTEXT (t)

OUTPUT (t)

L
p(Y;0) = Hp(yt‘ylzt—l; 0)
=1

* A natural choice for language modeling since 1950.

e Extended to a neural version in 2001.

e |Infinite-context version in 2011:

CONTEXT (t-1)

e This is when things got so much more
Interesting.

[Mikolov et al., 2011]




Autoregressive
language modeling

1000

. AutoregressiLve modeling = .
2 100 Megatron-Turing NLG (530B)
-
p(Y; 6) — I I p(yt | yl:t_l; 0) g M i L Turing-NLG (17.2B)
t=1 é TS5 (11B)
* A natural choice for language = ——
modeling since 1950. 2
§O BERT-Large (340M)
e A neural version in 2001.
ELMo (94 M)
* Infinite-context version in 2011.
. ', Microsoft
 Now: the war of “# parameters Already outdated

This is a bit ridiculous that we are spending so many scientists on this war, though...
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Neural autoregressive language modeling

» Language modeling is reduced to text classification: p(y, |y, ..., y,_1; 0)
» Targety, € V

Input (y(, ..., ¥,_1) € VX - XV

—

—1

e Model parameters @



Autoregressive language modeling

» Two natural ways to build this classifier p(y, |y, ..., y,_1;0)

A recurrent network: LSTM, GRU, etc.

* Pros: constant memory/computation in the forward pass

* Cons: difficult learning and inherent sequential processing

 An attention network: transformers, etc.
* Pros: highly parallel processing and easy learning

* Cons: linear memory/computation in the forward pass

But, this is not what | want to talk about it today...
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Training a language model

» Language modeling is reduced to text classification: p(y, |y, ..., y,_1; 0)
* For learning, we use cross-entropy:

* Entropy: expected negative log-probability under the same distribution

FN = “Z P(Eeb]_.)log?- Pbi(j)

0 [Shannon, 1950]

» Cross-entropy: expected negative log-probability under a different distribution

- ) (I logp(y]x; 6)

yeV
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Training a language model

almost exactly like training a classifier

* For training a language
model, we use Cross-
entropy which is the
upperbound to entropy.

* |n other words, training a
language model is find a
distribution that matches
the inherent entropy of
natural language.

—> "p'(ylz)log p(ylz; 0) > — Y p*(ylz)logp* (yl=),

yeV

because

) p'(ylz)log p(ylx; 6)

yeV

yeV

*

=) p*(ylz)log *E il

yev 33)

p(y|z; 6)

p(y|z; 6)
—Zp (y|z) (logp (y|z) + log — )
* . p(ylz; 6)
=) p'(ylz)logp'(ylz) + ) p(ylz)log o)
yeV yev P {yx
=—KL(p*|p") >0

<) p*(ylz)logp’ (y|x).

yev



Training a language model

Almost exactly like training a classifier

 Qverall, the loss function is

Y] 1 N |Y"
e | 2102P011y<i 0) | & < 2 D 1ogpGi' 3% 0)
=1

n=1 r=1

* Almost like training a classifier, but not quite.

- Examples (y_,,y,') are highly correlated within each sequence Y.

 Highly correlated, because they come from the same text.

But, it turned out no one really cares about this... ugh...



Taking a step back ...

» Vincludes a special symbol (€0s), and y; = (eos) for any Y.



If <eos> wasn’t there ...

» A prefix y;., is always more likely than the full sequence y;.7:

PP YD) PO ye) = pODPDH 1Y) POy POl yer)

* because the probability is bounded from above by 1.

e Weird...
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But, <eos> IS here ...

e <e0Ss> saves us from this weird behaviour.

* Any valid sequence ends with <eos>.

« A prefix y;., Is always more likely than the full sequence y,.;:

» Instead of a prefix y,.,, consider a premature sequence y,..4(€0s)

PP y)p vy Ip(Ceos) [ y-) ? pppOaly) POl ye) POl yer)
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But, <eos> IS here ...

» A prefix y;., is always more likely than the full sequence y;.7:

» Instead of a prefix y,.,, consider a premature sequence ;.4 (€0s)

pOIPY [y Pl yDpeos) [ y-) ? pDpOa 1 y) POy POl yer)

* The probability of a premature seq. should be lower than the full sequence:

Wt

YepP((e0s) | <) < p(y)pQutyp—p(7,

Ve P Vw1 | Yerr 1) PN YD) PO Y1)

* |n other words, as long as <eos> is highly unlikely after a prefix, the premature
sequence can be less probable than the full sequence.

19



Oversmoothing rate

» Given a sequence y = (y;, V», ---, Y1), We check how often the inequality is
violated:

1 T T
r(y) = = ; I'| p({eos)|y.,) > gp(yf\y«)

* |t counts how many premature seq.’s are more probable than the full seq.

« We want this oversmoothing rate to be small ( &~ 0) in natural language.

20



Oversmoothing rate is high!
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Oversmoothing rate is high!

« It is not enough to simply lower p({eos) | y_,) when y, # (€0s).

* |.e., It is not enough to treat it as a series of independent classification.

T
_ p({eos) | y.,) must be lowered below Hp(yt,\yq,).

t'=t

* |.e., we must take into account the sequence structure.
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Minimizing the oversmoothing rate

* [he oversmoothing rate is not easy to minimize

1 T T
r(y) = = ; / (p(<608> | ye) > gp(yf | y<tf))

* because it is an average of 0-1 losses (piece-wise constant.)

Hp(yz"y<t’) —p(<608> ‘y<t)
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Oversmoothing loss

A convex relaxation with a piece-wise linear loss and margin m > 0:

o(y) = Z max | 0,m + logp({eos)|y.,) — long(yt | Ver)

t— t'=t

m
T
max (O,m +log p({eos) | y.,) — log | | p(y/ y<tf)>

t'=t
24



Oversmoothing loss

A convex relaxation with a piece-wise linear loss and margin m > 0:

1 T T
o(y) = >, max | 0.m +logp({eos) |y<) = D’ logp(|y<)

=1 t'=t
» Minimizing log p({eos) | y_,) ensures <eos> is scored low when it is not supposed
to show up: we treat <eos> specially within a sequence.

T
Maximizing Z log p(y, | y_,) ensures the model does not focus too much on the

earlier tokenézbtut also emphasize the tokens in the latter part of a sequence.
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We can lower the oversmoothing rate.

Dramatically!
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What happens under the hood?

* The log-probabillity of an incorrectly
place <eos> decreases dramatically.

Avg. log p({eos}|yprefix)

=1 t'=t

1 T T
o(y) = ? Z max (O,m + log p({eos) | y.,) — Z log p(y, | }’<t’)>

—10
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Figure 2: Log-probabilities of (eos) token within length-
t prefixes averaged across all positions per translation

and then averaged across all translations.
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What happens under the hood?
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* The effect is however much more e hesiti} ZHeEN
visible when we look at their rank. | SERELY RIEER
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J

e The rank is what matters when
we consider approximate decoding.

Norm. rank of {eos)

Theorem 3.4 (Inconsistency of an incomplete de-
coding algorithm). There exists a consistent recur-
rent LM py from which an incomplete decoding 0.0+ = s P e oes
algorithm F, that considers only up to (|V| — 1)- Weight a

most likely tokens according to pgo(y; | y<¢, C) at
each step t, finds an infinite-length sequence Y
with probability 1, i.e., qr(|Y| = o0) = 1.

Welleck et al. (2020)

Figure 4: Normalized rank of (eos) token within length-
t prefixes averaged across all positions per translation
and then averaged across all translations.
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But, it doesn’t hurt nor improve modeling
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* This implies that

Perplexity
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 MLE has ambiguity in modeling <eos>
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Figure 3: Perplexity measured on reference translations
1s stable as oversmoothing loss has more contribution.

29



Let’s take a quick step back ...

Oversmoothing in the wild
Koehn & Knowles in 2016

BLEU

» Better search (larger beam) leads
to worse translation.

e Worse translations tend to be

dramatically shorter.
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Oversmoothing in the wild
Stahlberg & Byrne in 2019

 For many source sentences, the most probable translations are empty!

Beam size
1 2 3 5 10 30100
o8 | . 1100 2 LSTM* 28.6 58.4% 47.7%

D 96| 1099 ¢ SliceNet* 28.8 46.0% | 41.2%

0 294 g'gg e Transformer-Base 30.3 57.7% 51.8%
29.2 5 o9 Transformer-Big™ 31.7 32.1% 25.8%
ggg _ Length ratio —= 1 10.95

" 72% 69% 66% 63% 60% 57% 54% Table 2: *: The recurrent LSTM, the convolutional
#Search errors SliceNet (Kaiser et al., 2017), and the Transformer-Big

Figure 1: BLEU over the percentage of search er- systems are strong baselines from a WMT" 18 shared

rors. Large beam sizes yield fewer search errors but task submission (Stahlberg et al., 2018a).
the BLEU score suffers from a length ratio below 1.
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Oversmoothing in the wild

Post-hoc fixes

* |Length penalty during decoding [Cho et al., 2014; Wu et al., 2016; ...]

When we use the beam-search to find the £ best s(Y, X) = log(P(Y X)) /lp(Y) + ep(X;Y)
translations, we do not use a usual log-probability (5 +|Y])°
but one normalized with respect to the length of ip(Y) = (5 + 1)
the translation. This prevents the RNN decoder X Y|
from favoring shorter translations, behavior which ep(X;Y) =B Y log(min() p;;,1.0)),
was observed earlier 1n, e.g., (Graves, 2013). i=1 j=1

[Cho et al., 2014] [Wu et al., 2016]
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Oversmoothing in the wild

Post-hoc fixes

* |earned length penalty [Murray & Chiang, 2018]

Finally, some systems add a constant word re-  If we approximate the expectation using the mode
ward (He et al., 2016): of the distribution, we get
s'(e) = s(e) + ym. oL ol + 1
— ~ —|e"| + [é
B

It ¥ = 0, this reduces to the baseline model. The
advantage of this simple reward is that it can be where é 1s the 1-best translation. Then the stochas-

computed on partial translations, making it easier tic gradient descent update 1s just the familiar per-
to integrate into beam search. ceptron rule:

y <y +n(e’| —|é]),
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Oversmoothing in the wild

Post-hoc fixes

* Length penalty is a bandage and does not get to the heart of the problem.

However, none of these papers directly solves
the mystery outlined in Section 1, 1.e., why doesn’t
maximimum likelihood training already shift prob-

ability away from emtpy output candidates, toward
appropriate-length ones?

Shi et al. [2020]

-
" Of course.. we just did @

[et’'s now come back to our method.
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Length degeneracy disappears

Strong regularization of oversmoothing removes the issue of length degeneracy

Even without using any length penalty during beam search
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Oversmoothing vs. translation quality

* With highly approximate search (beam5), no impact on translation quality.

* With less approximate search (beam1000), we observe significant
Improvement in translation quality with lessened oversmoothing

 Mostly from ruling out unreasonably short translations.
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Problem solved ... ?

Obvious

ly not ... :(



Oversmoothing

Positive news

o Carefully determined/defined the issue of oversmoothing:

1 T T
o) = ; I p({eos)|y.,) > gp(yf\y«)

o Carefully designed a loss function to alleviate this issue:

o(y) = Z max | 0,m + logp((eos) | y.,) — long(yt [ Yer)

t— t'=t
* Experimentally demonstrated the effectiveness of this oversmoothing loss.
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Oversmoothing

Negative news

 BUT, translation quality has not improved.

* AND, better translations are still found by more approximate search
« Beam search with a small beam

 Mystery continues ...

* How is beam search finding those high-quality but not
necessarily most probable translations from our model?

N Fin.



