
Kyunghyun Cho
Work done together with Ilia Kulikov and Maksim Eremeev

Oversmoothing in  
neural autoregressive modeling

1

Language modeling

• Setup:

• , where with a set of all unique tokens.

• The length may vary from one sequence to another.

• includes a special symbol , and for any .

• Goal:

• Build a model (parametrized by) that computes a probability .

• A reasonable receives a high probaiblity

Y = (y1, y2, …, yL) yl ∈ V V

L ∈ {1,2,3,…}

V ⟨eos⟩ yL = ⟨eos⟩ Y

θ p(Y; θ)

Y
2

Language modeling is fascinating
because language is a fascinating way to encapsulate ideas

• Relation extraction

• Barak Obama was the 44th president of the United States.

• Common-sense reasoning

• Jane performed an emergency surgery on John, because John was in a car accident.

• Question-answering

• Wikipedia is a free content, multilingual online encyclopedia written and maintained by a community
of volunteers through a model of open collaboration, using a wiki-based editing system.

• Machine translation

• “뉴욕대학교는 뉴욕시에 위치한 사립대학교이다.” is in English “New York University is a private university
located in New York City.”

3

Language modeling is fascinating
because language is a fascinating way to encapsulate ideas

• All these problems can be solved by solving

• So, all we need is a language model.

arg max
ymissing

log p([yobserved, ymissing]; θ)

4

Autoregressive language modeling

• (Closely related) properties of language modeling

• We deal with variable-length sequences.

• Each element within a sequence is from a finite set of unique tokens.

5

Autoregressive language modeling

• Autoregressive modeling

• One classifier is used over and over

• It can handle sequences of varying length.

• It is compositional (rather simple one, though.)

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)

6

Autoregressive
language modeling
• Autoregressive modeling

• A natural choice for language
modeling since 1950

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)

7[Shannon, 1950]

Autoregressive
language modeling
• Autoregressive modeling

• A natural choice for language
modeling since 1950.

• Extended to a neural version in 2001.

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)

8

[Bengio et al., 2003]

Autoregressive
language modeling
• Autoregressive modeling

• A natural choice for language modeling since 1950.

• Extended to a neural version in 2001.

• Infinite-context version in 2011:

• This is when things got so much more
interesting.

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)

9

[Mikolov et al., 2011]

Autoregressive
language modeling
• Autoregressive modeling

• A natural choice for language
modeling since 1950.

• A neural version in 2001.

• Infinite-context version in 2011.

• Now: the war of “# parameters”

p(Y; θ) =
L

∏
t=1

p(yt |y1:t−1; θ)

10

Microsoft
Already outdated

This is a bit ridiculous that we are spending so many scientists on this war, though…

Neural autoregressive language modeling

• Language modeling is reduced to text classification:

• Target

•
Input

• Model parameters

p(yt |y1, …, yt−1; θ)

yt ∈ V

(y1, …, yt−1) ∈ V × ⋯ × V
t−1

θ

11

Autoregressive language modeling

• Two natural ways to build this classifier

• A recurrent network: LSTM, GRU, etc.

• Pros: constant memory/computation in the forward pass

• Cons: difficult learning and inherent sequential processing

• An attention network: transformers, etc.

• Pros: highly parallel processing and easy learning

• Cons: linear memory/computation in the forward pass

p(yt |y1, …, yt−1; θ)

12

Cho et al. [2014]

Vaswani et al. [2017]
But, this is not what I want to talk about it today…

Training a language model

• Language modeling is reduced to text classification:

• For learning, we use cross-entropy:

• Entropy: expected negative log-probability under the same distribution

• Cross-entropy: expected negative log-probability under a different distribution

p(yt |y1, …, yt−1; θ)

−∑
y∈V

p*(y |x)log p(y |x; θ)

13

[Shannon, 1950]

Training a language model
almost exactly like training a classifier

• For training a language
model, we use cross-
entropy which is the
upperbound to entropy.

• In other words, training a
language model is find a
distribution that matches
the inherent entropy of
natural language.

14

Training a language model
Almost exactly like training a classifier

• Overall, the loss function is

• Almost like training a classifier, but not quite.

• Examples are highly correlated within each sequence .

• Highly correlated, because they come from the same text.

𝔼Y∼D [
|Y|

∑
t=1

log p(yt |y<t; θ)] ≈
1
N

N

∑
n=1

|Yn|

∑
t=1

log p(yn
t |yn

<t; θ)

(yn
<t, yn

t) Yn

But, it turned out no one really cares about this… ugh…

Taking a step back …

• Setup:

• , where with a set of all unique tokens.

• The length may vary from one sequence to another.

• includes a special symbol , and for any .

• Goal:

• Build a model (parametrized by) that computes a probability .

• A reasonable receives a high probaiblity

Y = (y1, y2, …, yL) yl ∈ V V

L ∈ {1,2,3,…}

V ⟨eos⟩ yL = ⟨eos⟩ Y

θ p(Y; θ)

Y
16

If <eos> wasn’t there …

• A prefix is always more likely than the full sequence :

• because the probability is bounded from above by 1.

• Weird…

y1:t y1:T

p(y1)p(y2 |y1)⋯p(yt |y<t) ≥ p(y1)p(y2 |y1)⋯p(yt |y<t)⋯p(yT |y<T)

17

But, <eos> is here …

• <eos> saves us from this weird behaviour.

• Any valid sequence ends with <eos>.

• A prefix is always more likely than the full sequence :

• Instead of a prefix , consider a premature sequence

y1:t y1:T

y1:t y1:t+⟨eos⟩

p(y1)p(y2 |y1)⋯p(yt |y<t)p(⟨eos⟩ |y≤t) ? p(y1)p(y2 |y1)⋯p(yt |y<t)⋯p(yT |y<T)

18

But, <eos> is here …

• A prefix is always more likely than the full sequence :

• Instead of a prefix , consider a premature sequence

• The probability of a premature seq. should be lower than the full sequence:

• In other words, as long as <eos> is highly unlikely after a prefix, the premature
sequence can be less probable than the full sequence.

y1:t y1:T

y1:t y1:t+⟨eos⟩

p(y1)p(y2 |y1)⋯p(yt |y<t)p(⟨eos⟩ |y≤t) ? p(y1)p(y2 |y1)⋯p(yt |y<t)⋯p(yT |y<T)

p(y1)p(y2 |y1)⋯p(yt |y<t)p(⟨eos⟩ |y≤t) ≤ p(y1)p(y2 |y1)⋯p(yt |y<t)p(yt+1 |y<t+1)⋯p(yt |y<t)⋯p(yT |y<T)

19

Oversmoothing rate

• Given a sequence , we check how often the inequality is
violated:

• It counts how many premature seq.’s are more probable than the full seq.

• We want this oversmoothing rate to be small () in natural language.

y = (y1, y2, …, yT)

r(y) =
1
T

T

∑
t=1

I (p(⟨eos⟩ |y<t) >
T

∏
t′ =t

p(yt′
|y<t′

))
≈ 0

20

Oversmoothing rate is high!

21

Oversmoothing rate is high!

• It is not enough to simply lower when .

• i.e., it is not enough to treat it as a series of independent classification.

• must be lowered below .

• i.e., we must take into account the sequence structure.

p(⟨eos⟩ |y<t) yt ≠ ⟨eos⟩

p(⟨eos⟩ |y<t)
T

∏
t′ =t

p(yt′
|y<t′

)

22

Minimizing the oversmoothing rate

• The oversmoothing rate is not easy to minimize

• because it is an average of 0-1 losses (piece-wise constant.)

r(y) =
1
T

T

∑
t=1

I (p(⟨eos⟩ |y<t) >
T

∏
t′ =t

p(yt′
|y<t′

))

23

T

∏
t′ =t

p(yt′
|y<t′

) − p(⟨eos⟩ |y<t)

Oversmoothing loss

• A convex relaxation with a piece-wise linear loss and margin :
m ≥ 0

o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) − log
T

∏
t′ =t

p(yt′
|y<t′

))

24

max (0,m + log p(⟨eos⟩ |y<t) − log
T

∏
t′ =t

p(yt′
|y<t′

))
m

Oversmoothing loss

• A convex relaxation with a piece-wise linear loss and margin :

• Minimizing ensures <eos> is scored low when it is not supposed
to show up: we treat <eos> specially within a sequence.

• Maximizing ensures the model does not focus too much on the

earlier tokens but also emphasize the tokens in the latter part of a sequence.

m ≥ 0

o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) −
T

∑
t′ =t

log p(yt′
|y<t′

))
log p(⟨eos⟩ |y<t)

T

∑
t′ =t

log p(yt′
|y<t′

)

25

We can lower the oversmoothing rate.
Dramatically!

26

What happens under the hood?

• The log-probability of an incorrectly 
place <eos> decreases dramatically.

27

o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) −
T

∑
t′ =t

log p(yt′
|y<t′

))

What happens under the hood?

• The effect is however much more  
visible when we look at their rank.

• The rank is what matters when 
we consider approximate decoding.

28

Welleck et al. (2020)

But, it doesn’t hurt nor improve modeling

• This implies that

• MLE has ambiguity in modeling <eos>

• Oversmoothing loss selects a solution 
that avoids the issue of oversmoothing

29

Oversmoothing in the wild
Koehn & Knowles in 2016

• Better search (larger beam) leads  
to worse translation.

• Worse translations tend to be  
dramatically shorter.

30

Let’s take a quick step back …

Oversmoothing in the wild
Stahlberg & Byrne in 2019

• For many source sentences, the most probable translations are empty!

31

Oversmoothing in the wild
Post-hoc fixes

• Length penalty during decoding [Cho et al., 2014; Wu et al., 2016; …]

32

[Cho et al., 2014] [Wu et al., 2016]

Oversmoothing in the wild
Post-hoc fixes

• Learned length penalty [Murray & Chiang, 2018]

33

Oversmoothing in the wild
Post-hoc fixes

• Length penalty is a bandage and does not get to the heart of the problem.

• Of course.. we just did 😉
34

Shi et al. [2020]

Let’s now come back to our method.

Length degeneracy disappears

• Strong regularization of oversmoothing removes the issue of length degeneracy

• Even without using any length penalty during beam search

35

Oversmoothing vs. translation quality
• With highly approximate search (beam5), no impact on translation quality.

• With less approximate search (beam1000), we observe significant
improvement in translation quality with lessened oversmoothing

• Mostly from ruling out unreasonably short translations.

36

Problem solved … ?

37
Obviously not … :(

Oversmoothing
Positive news

• Carefully determined/defined the issue of oversmoothing:

• Carefully designed a loss function to alleviate this issue:

• Experimentally demonstrated the effectiveness of this oversmoothing loss.

r(y) =
1
T

T

∑
t=1

I (p(⟨eos⟩ |y<t) >
T

∏
t′ =t

p(yt′
|y<t′

))

o(y) =
1
T

T

∑
t=1

max (0,m + log p(⟨eos⟩ |y<t) − log
T

∏
t′ =t

p(yt′
|y<t′

))
38

Oversmoothing
Negative news

• BUT, translation quality has not improved.

• AND, better translations are still found by more approximate search

• Beam search with a small beam

• Mystery continues …

• How is beam search finding those high-quality but not

necessarily most probable translations from our model?

39 Fin.

