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Neural Network (NN) Training Bottlenecks
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Training large-scale models imposes challenges on computational and memory resources.
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A Simple & Popular Direction: Sparsify Models

Sparsity is not new!
* has along history in machine learning (Lecun et al. 90)
e stats (Tibshirani et al. 96), neuroscience (foldiak et al. 03), signal processing (Candes et al. 05)

Existing approaches:
* Pruning: Deep Comp (Han et al. 16), Lottery Tickets (frankle et al. 18), RigL (Evci et al. 20) ...
* Approx. matmul: Reformer (Kitaev et al. 20), Kaleidoscope (Dao et al. 20)...
SLIDE, Mongoose, Scatterbrain (Chen et al. 20 & 21a & 21b)

It is still hard to speed up training without degrading accuracy on the available hardware for DL.

We’ll show how simple & static sparsity can speed up GPT-2, ViT and MLP-Mixer training
by 2.5x in wall-clock time with no drop in accuracy.



Challenges & Goals

Challenges Ideal Sparsity

* Dynamic sparsity can maintain accuracy but slow  Static, simple yet accurate
down training time
o SOTA require up to 5x more epochs (Evci et al., 20)

Memory Access
* Unstructured Sparsity is not * Aligned with available hardware
hardware-efficient (Hooker et al. 20)
e Sparse Attention target one module and thus does  Applied to most NN layers

not speed up all layers
o In many applications the MLP layers are the
training bottleneck (Wu et al., 20)



Observation: Butterfly + Low-rank is a simple &
effective fixed sparsity pattern

Sparse + Low-rank l

Captures global and local information (Candes et al., 2009, Chen et al., 2021)
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Butterfly (cooley&Tukey 1965, Dao et al., 2019) Low-rank (Hotelling et al., 1933, udell 2019)



Background & Observation

Sparse + low-rank approx. to attention matrices, butterfly matrices
Observation: Butterfly + low-rank is an effective fixed sparsity pattern

Pixelated Butterfly

Flat & block butterfly matrices
Analysis: Retain expressiveness & global convergence

Applications

End-to-end training, downstream evaluation, empirical Neural Tangent Kernel
Experiments: performance on a wide range of vision and language tasks



Background

Attention approximation: Sparse or Low-rank

Attention approximation = trade accuracy for efficiency
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Sparse Transformer Linformer
(Child et al. 19) (Wang et al. 20)
Reformer ¢(K)T Linear Transformer
(Kitaev et al. 20) (Katharopoulos et al. 20)
Routing Transformer < > Performer
(Roy et al. 20) (Choromanski et al. 20)
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It is hard to find a robust approx. that performs well on a wide variety of tasks.



Background

Sparse + Low-rank improves on either sparse / low-rank

/ S SPARSE v \ Well-studied in stats and signal processing (Candes et al. 09)
| An example in (Chen et al. 21b):
' \ Reformer (sparse) + Performer (low-rank)
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More examples:
Long-short Transformer (Zhu et al. 21)
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Background

Scatterbrain: combine Sparse and Low-rank Attention

Simple insight: discount low-rank contribution at sparse locations
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Background

Butterfly matrices: Divide-and-Conquer

Transform
of size N
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Size N/2 Size N/2 _ . J l . J l 0 . l By |
Size N/4 || Size N/4 Size N/4 | | Size N/4 o L et | -
/\ /\ /\ /\ (Parker, 95; Matthieu & LeCun, 14;
Dao et al., 19, Roberts et al., 21)
Recursive divide-and-conquer Trainable with gradient descent on nonzero
(De Sa et al., 18) entries of butterfly matrix.

Captures recursive divide-and-conquer structure.
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Butterfly matrices can represent ANY Sparse matrix

Deep composition of butterfly matrices: B(l)B(Q)TB(S)B(4)TB(5)B(6)T .
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Butterfly matrix: Fixed sparsity

Provably capture any sparse matrix with near-optimal space and time complexity
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Background

Observation: Butterfly + Low-rank is a simple &
effective fixed sparsity pattern

Sparse + Low-rank l

Captures global and local information (Candes et al., 2009, Chen et al., 2021)
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Butterfly (cooley&Tukey 1965, Dao et al., 2019) Low-rank (Hotelling et al., 1933, udell 2019)

Butterfly + Low-rank can: (1) avoid dynamic overhead (3) apply to most matmul-based layers
(2) but it is not hardware-efficient
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Background & Observation

Sparse + low-rank approx. to attention matrices, butterfly matrices
Observation: Butterfly + low-rank is an effective fixed sparsity pattern

Pixelated Butterfly

Flat & block butterfly matrices
Analysis: Retrain expressiveness & global convergence

Applications

End-to-end training, downstream evaluation, empirical Neural Tangent Kernel
Experiments: performance on a wide range of vision and language tasks
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Issues of Butterfly matrices

Issues Pixelated Butterfly

* Slow speed: Sparsity patterns are not block- ¢ Block Butterfly: Block-aligned sparsity
aligned = not friendly to modern hardware. pattern.

* Difficulty of parallelization: They are products ¢ Flat Butterfly: First order approximation

of many factors = sequential operations of butterfly, turning product into sum.
* Reduced expressiveness: Flat Butterfly are  Low-rank term: Increase expressiveness
necessarily high-rank = cannot represent of Flat Block Butterfly matrices.

low-rank matrices
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Issues of Butterfly matrices

Issues Pixelated Butterfly

* Slow speed: Sparsity patterns are not block- ¢ Block Butterfly: Block-aligned sparsity
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low-rank matrices
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Our Approach: Flat & Block Butterfly

Problem 1: Not block-aligned

-

Butterfly

Block Butterfly




Issues of Butterfly matrices

Issues Pixelated Butterfly

* Slow speed: Sparsity patterns are not block- ¢ Block Butterfly: Block-aligned sparsity
aligned = not friendly to modern hardware. pattern.
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low-rank matrices

17



Our Approach: Flat & Block Butterfly

Problem 1: Not block-aligned Problem 2: Hard to parallelize the product of many factors

4 Butterfly Block Butterfly

Approx. product with sum




Issues of Butterfly matrices

Issues Pixelated Butterfly

* Slow speed: Sparsity patterns are not block- ¢ Block Butterfly: Block-aligned sparsity
aligned = not friendly to modern hardware. pattern.

e Difficulty of parallelization: They are products ¢ Flat Butterfly: First order approximation

of many factors = sequential operations of butterfly, turning product into sum.
* Reduced expressiveness: Flat Butterfly are  Low-rank term: Increase expressiveness
necessarily high-rank = cannot represent of Flat Block Butterfly matrices.

low-rank matrices
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Pixelated Butterfly Workflow

Model Schema
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Theoretical properties of Pixelated Butterfly

Theorem 1 [Informal]: Block butterfly retains the expressiveness of Butterfly and flat
butterfly can accurately approximate the residual form of butterfly. (Dao et al. 20)

Theorem 2: Flat block butterfly + low-rank is more expressive than sparse or low-
rank matrices alone. (Chen et al. 20)

Theorem 3: Training wide an sparse networks with gradient descent converges
globally, similar to the result for wide dense networks. (dzps19, als19)

Intuition: Pixelated butterfly inherits all the nice properties of butterfly matrices,
sparse + low-rank matrices, and sparse training.
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Background & Observation

Sparse + low-rank approx. to attention matrices, butterfly matrices
Observation: Butterfly + low-rank is an effective fixed sparsity pattern

Pixelated Butterfly

Flat & block butterfly matrices
Analysis: Retrain expressiveness & global convergence

Applications

End-to-end training, downstream evaluation, empirical Neural Tangent Kernel
Experiments: performance on a wide range of vision and language tasks
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Evaluation™ 1: Image Classification

Model ImageNet  CIFAR10 CIFAR100 Speedup
(Top1 Acc)
Mixer-B/16 75.6 87.6 59.5 -
Pixerfly-Mixer-B/16 76.3 90.6 65.4 2.3 x
ViT-B/16 78.5 89.9 61.9 -
Pixerfly-ViT-B/16 78.6 92.2 65.1 2.0 x

Pixelated butterfly is up to 2.3x faster (wall-clock) than dense MLP-Mixer and Vision
Transformer models without accuracy loss.

*More results in paper 23



Evaluation 2: Language Modeling & Classificaiton

Model WikiText103(ppl) Speedup
GPT-2 Small 22.2 - Model Long Range  Speedup
BigBird 23.3 0.96 x Arena (avg Acc)
Pixerfly-Small 22.5 2.1 x Transformers 59.01 -
GPT-2 Medium 215 - Reformer 53.9 0.8 x
BigBird Medium 21.5 1.1 x Pixerfly 59.86 5.2 X
Pixerfly-Medium 21.0 2.5x

Pixelated butterfly is up to 2.5x faster (wall-clock) than dense GPT-2, 5x faster than vanilla
Transformer without accuracy loss.
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Extended Evaluations: Downstream Tasks & NTK

Upstream task: OpenWebText

WikiText (ppl)’ Lambada (acc)’ Classification (avg acc)?
GPT-2 Medium 31.87 35.4 33.2
Pixerfly Medium 30.5 38.9 33.4
0.8
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[1] https://github.com/EleutherAl/Im-evaluation-harness

[2] Zhao et al. 2021 25



https://github.com/EleutherAI/lm-evaluation-harness

Conclusion and Future Directions

Conclusion

Early Exploration: A simple pattern, butterfly + low-rank consistently performed among the best.
Proposal: Pixelated butterfly, a static and block sparsity pattern that aligns with modern hardware.

Result: Train GPT-2, ViT and MLP-Mixer up to 2.5x faster on GPU.

Future Directions

Pixelfly 2.0: Going beyond dense models in applications, e.g., PDE solving & MRI reconstruction.
Pixelfly-hardware Co-design: Efficient sparsity / butterfly on next generation of ML accelerators.

Pixelfly meets data sparsity: Find structures in data and speed up training from a different angle.
26



THANKS!

Paper: https://arxiv.org/abs/2112.00029
Code: https://github.com/HazyResearch/pixelfly

Contact: beidic@stanford.edu
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