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Motivation

Form an ensemble model

● In output space
● In weight space
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Motivation

Form an ensemble model

● In output space
● In weight space (Embedded ML)
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Motivation

Ensemble by weight averaging 

requirements:

1. Functionally diverse solutions
2. Residing in one basin
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Linear Mode Connectivity

Functionally different solutions:
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Linear Mode Connectivity

Functionally different solutions:

Weight space averaging fails
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Linear Mode Connectivity

Same basin:

When part of training trajectory is shared, the solutions 
are linearly mode connected (Frankle et al., 2019) .
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Stochastic Weight Averaging

Same basin:

e.g. SWA (Izmailov et al., 2018) 
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Question

Is there any way to make different solutions in one basin?
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Conjecture
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A, B, C, and D are minimas in different basins 
with barriers between pairs.



Conjecture

Taking permutations into account, there is likely 
no barrier in the linear interpolation between SGD 
solutions.
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Part 1: 
Observations 
over loss landscape shape

12



Barrier
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Effect of Width on barrier size

14

As the width increases, the barrier first 
increases and then decreases 



Deep Double Descent in Barrier
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Effect of Width on barrier size
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As the width increases, the barrier first 
increases and then decreases 



Effect of Width on barrier size:
Barrier saturates at high level in deeper models
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Effect of Depth on barrier size
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Low barrier when number of layers are low 

Fast and significant barrier increase as 
more layers are added



Effect of Depth on barrier size
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Low barrier when number of layers are low 

Fast and significant barrier increase as 
more layers are added



Effect of Depth on barrier size
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Effect of Task Complexity on barrier size
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(architecture, task) has lower barrier if 

the test error is lower 



Effect of Task Complexity on barrier size
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Effect of depth is stronger than 

(architecture, task) which leads to high 

barrier values for deep nets



Part 2: 
evidences to support conjecture
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Conjecture: recall
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m1, m2 are trained and converged



Conjecture: recall 
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m1, m2 are trained and converged

There exists a permutation applied to 

m2 , making m1 and m2’ Linearly Mode 

Connected.



Permutation 
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Real-world 
vs.

Our model
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We train networks by running SGD with 
different random seeds and different 
initialization.



Real-world 
vs.

Our model
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Different final networks are obtained by 
applying random permutations to the 
same SGD solution.



Real-world 
vs.

Our model
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● Our model satisfies the conjecture



Real-world 
vs.

Our model
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● Our model satisfies the conjecture

● We show that Real world ~ Our model



Real-world 
vs.

Our model

Similar loss barrier between real 
world and our model BEFORE 
permutation search
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Real-world 
vs.

Our model

Similar loss barrier between real 
world and our model BEFORE 
permutation search, across all 
datasets, architectures, width, 
and depth
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Permutation Search: Simulated Annealing
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Simulated 
Annealing:

Performance
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Simulated 
Annealing:

Performance
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Real-world 
vs.

Our model

Similar loss barrier between real 
world and our model AFTER 
permutation search
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Real-world 
vs.

Our model
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● We show that Real world ~ Our model



Takeaways
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● One way to form ensembles is to weight average solutions 

● Conjecture:  we can make different SGD solutions in one basin 

using permutations

● Our theoretical results + extensive experiments fall short of 

refuting our bold conjecture.



Thanks
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Code: https://github.com/rahimentezari/PermutationInvariance

   
entezari@tugraz.at

https://github.com/rahimentezari/PermutationInvariance


Improve 
Search 

Algorithm:

Functional 
Difference

40He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." arXiv 
preprint arXiv:1805.09791 (2018).



Improve 
Search 

Algorithm:

FD vs. SA

41He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." arXiv 
preprint arXiv:1805.09791 (2018).


