The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks

Rahim Entezari, Hanie Sedghi, Olga Saukh, Behnam Neyshabur

Motivation

Form an ensemble model

- In output space
- In weight space

Motivation

Form an ensemble model

- In output space
- In weight space (Embedded ML)

Motivation

Ensemble by weight averaging

requirements:

- 1. Functionally diverse solutions
- 2. Residing in one basin

Linear Mode Connectivity

Functionally different solutions:

Image credit: Mitchell Wortsman

Linear Mode Connectivity

Functionally different solutions:

Weight space averaging fails

Image credit: Mitchell Wortsman

Linear Mode Connectivity

Same basin:

When part of training trajectory is shared, the solutions are **linearly mode connected** (Frankle et al., 2019).

Image credit: Mitchell Wortsman

Stochastic Weight Averaging

Same basin:

e.g. SWA (Izmailov et al., 2018)

Question

Is there any way to make different solutions in one basin?

Conjecture

A, B, C, and D are minimas in different basins with barriers between pairs.

Conjecture

Taking permutations into account, there is likely no barrier in the linear interpolation between SGD solutions.

Part 1: Observations over loss landscape shape

Barrier

$$B(\theta_1, \theta_2) = \sup_{\alpha} \left[\left[\mathcal{L}(\alpha \theta_1 + (1 - \alpha) \theta_2) \right] - \left[\alpha \mathcal{L}(\theta_1) + (1 - \alpha) \mathcal{L}(\theta_2) \right] \right]$$

Effect of Width on barrier size

As the width increases, the barrier first increases and then decreases

Deep Double Descent in Barrier

Effect of Width on barrier size

As the width increases, the barrier first increases and then decreases

Effect of Width on barrier size:

Barrier saturates at high level in deeper models

Effect of **Depth** on barrier size

Low barrier when number of layers are low

Fast and significant barrier increase as more layers are added

Effect of **Depth** on barrier size

Low barrier when number of layers are low

Fast and significant barrier increase as more layers are added

Effect of **Depth** on barrier size

Effect of Task Complexity on barrier size

(architecture, task) has lower barrier if

the test error is lower

Effect of Task Complexity on barrier size

Effect of depth is stronger than (architecture, task) which leads to high barrier values for deep nets

Part 2: evidences to support conjecture

Conjecture: recall

 m_1, m_2 are trained and converged

Conjecture: recall

 $\rm m^{}_{1}, \rm m^{}_{2}$ are trained and converged

There exists a permutation applied to m_2 , making m_1 and m_2 ' Linearly Mode Connected.

Permutation

Real World

We train networks by running SGD with different random seeds and different initialization.

Our Model

Different final networks are obtained by applying random permutations to the same SGD solution.

• Our model satisfies the conjecture

- Our model satisfies the conjecture
- We show that Real world ~ Our model

Similar loss barrier between real world and our model **BEFORE** permutation search

Similar loss barrier between real world and our model **BEFORE** permutation search, across all datasets, architectures, width, and depth

Permutation Search: Simulated Annealing

Algorithm 1 Simulated Annealing (SA) for Permutation Search

1: procedure
$$SA(\{\theta_i\}, i = 1..n, n \ge 2)$$

2: $\pi_i = \pi_0, \forall i = 1..n$
3: for $k = 0; k < k_{max}; k++$ do
4: $T \leftarrow temperature(\frac{k+1}{k_{max}})$
5: Pick random candidate permutations $\{\hat{\pi}_i\}, \forall i = 1..n$
6: if $\Psi(P(\theta_i, \hat{\pi}_i)) < \Psi(P(\theta_i, \pi_i))$ then
7: $\pi_i \leftarrow \hat{\pi}_i$
return $\{\pi_i\}$

Simulated Annealing: Performance

Simulated Annealing: Performance

Similar loss barrier between real world and our model **AFTER** permutation search

• We show that Real world ~ Our model

Takeaways

- One way to form ensembles is to weight average solutions
- Conjecture: we can make different SGD solutions in one basin using permutations
- Our theoretical results + extensive experiments fall short of refuting our bold conjecture.

Thanks

Code: https://github.com/rahimentezari/PermutationInvariance

entezari@tugraz.at

Improve Search Algorithm:

Functional Difference

$$\delta E_l^{opt} = \frac{1}{2} (\tilde{\mathbf{w}}_{l,i}^A - \tilde{\mathbf{w}}_{l,j}^B)^\top \cdot \left((\tilde{\mathbf{H}}_{l,i}^A)^{-1} + (\tilde{\mathbf{H}}_{l,j}^B)^{-1} \right)^{-1} \cdot (\tilde{\mathbf{w}}_{l,i}^A - \tilde{\mathbf{w}}_{l,j}^B)$$

He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." *arXiv* preprint arXiv:1805.09791 (2018).

Improve Search Algorithm:

FD vs. SA

He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." *arXiv* preprint arXiv:1805.09791 (2018).