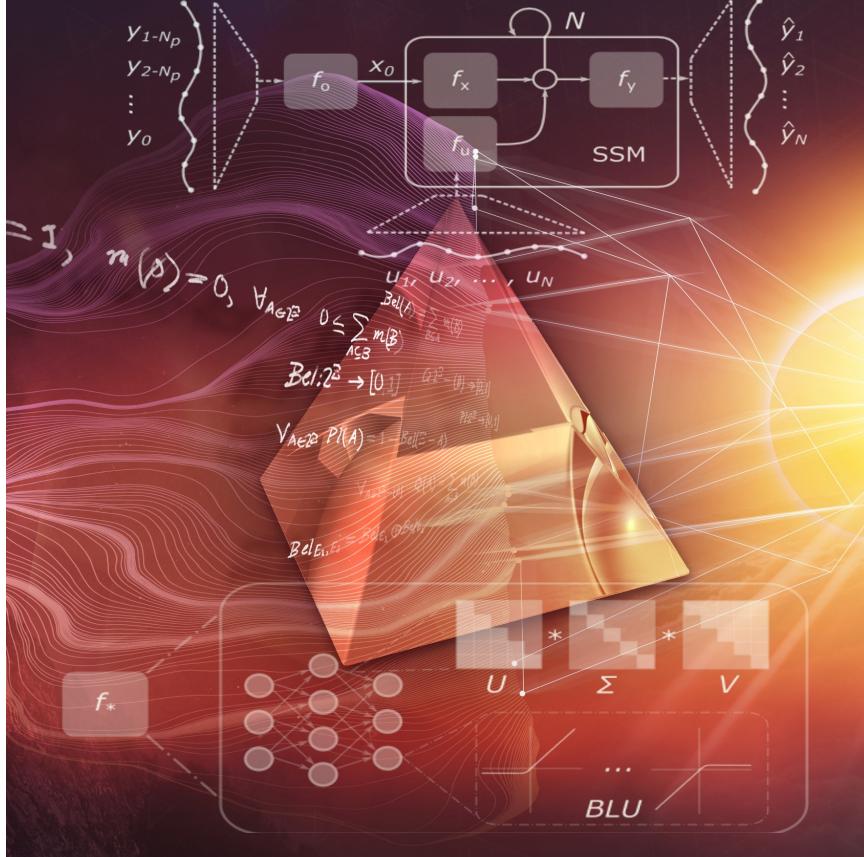


On Stochastic Stability of Deep Markov Models

DLC, April 8, 2021

Jan Drgona (PNNL), Sayak Mukherjee (PNNL), Jiaxin Zhang (ORNL), Frank Liu (ORNL), Mahantesh Halappanavar (PNNL)

PNNL is operated by Battelle for the U.S. Department of Energy



Stability Analysis of Deep Markov Models

Motivation

- Safety-critical systems call for formal verification methods to ensure safe operation.
- Properties like stability and robustness are crucial for reliable modeling and control.

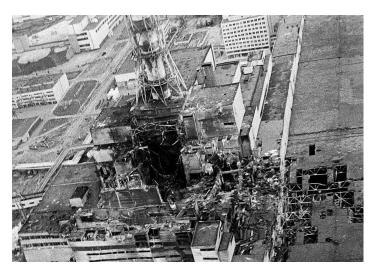
Objectives

Sufficient conditions for stochastic stability of deep Markov models (DMMs).

Approaches

Apply system-theoretic analysis methods on DMMs.

Real-world consequences of unstable systems.



TESLA
STORE &
DELIVERY
CENTER

CENTER

Reactors

Autonomous cars

Rocket landing

Deep Markov Models

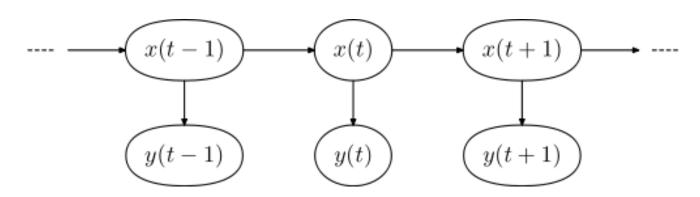
$$P(\mathbf{x}_{0:T}, \mathbf{y}_{0:T}) = P(\mathbf{x}_0)P(\mathbf{y}_0|\mathbf{x}_0) \prod_{t=0}^{T-1} P(\mathbf{x}_{t+1}|\mathbf{x}_t)P(\mathbf{y}_t|\mathbf{x}_t).$$

$$\mathbf{x}_{t+1} \sim \mathcal{N}(K_{\alpha}(\mathbf{x}_t, \Delta t), L_{\beta}(\mathbf{x}_t, \Delta t))$$
$$\mathbf{y}_t \sim \mathcal{M}(F_{\kappa}(\mathbf{x}_t))$$

$$K_{\alpha}(\mathbf{x}_{t}, \Delta t) = \mathbf{f}_{\theta_{\mathbf{f}}}(\mathbf{x}_{t})$$
$$\operatorname{vec}(L_{\beta}(\mathbf{x}_{t}, \Delta t)) = \mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x}_{t})$$

Deep Markov Models:

- Probabilistic graphical model (PGM)
- Generative model of sequential data
- Applications:
 - Economics, finance
 - Pattern recognition
 - Signal processing



https://en.wikipedia.org/wiki/Hidden_Markov_mode

Exploring connections between:

- Stability of stochastic systems
- Deep Markov models (DMMs)
- Contraction of DMM transitions
- Operator norms
- Banach fixed point theorem

Deep Neural Networks as Piecewise Affine Maps

$$\mathbf{DNN} \quad \boldsymbol{\psi}_{\theta_{\boldsymbol{\psi}}}(\mathbf{x}) = \mathbf{A}_L^{\boldsymbol{\psi}} \mathbf{h}_L^{\boldsymbol{\psi}} + \mathbf{b}_L$$
$$\mathbf{h}_l^{\boldsymbol{\psi}} = \boldsymbol{v} (\mathbf{A}_{l-1}^{\boldsymbol{\psi}} \mathbf{h}_{l-1}^{\boldsymbol{\psi}} + \mathbf{b}_{l-1})$$

PWA map $\psi_{\theta_{\psi}}(\mathbf{x}) = \mathbf{A}_{\psi}(\mathbf{x})\mathbf{x} + \mathbf{b}_{\psi}(\mathbf{x}).$

Local linear dynamics of DNN

At every point x, DNN can be represented as a product of PWA maps:

$$\mathbf{A}_{\boldsymbol{\psi}}(\mathbf{x})\mathbf{x} = \mathbf{A}_{L}^{\boldsymbol{\psi}} \mathbf{\Lambda}_{\mathbf{z}_{L}}^{\boldsymbol{\psi}} \mathbf{A}_{L-1}^{\boldsymbol{\psi}} \dots \mathbf{\Lambda}_{\mathbf{z}_{1}}^{\boldsymbol{\psi}} \mathbf{A}_{0}^{\boldsymbol{\psi}} \mathbf{x}$$
$$\mathbf{b}_{l}^{\boldsymbol{\psi}} := \mathbf{A}_{i}^{\boldsymbol{\psi}} \mathbf{\Lambda}_{\mathbf{z}_{l-1}}^{\boldsymbol{\psi}} \mathbf{b}_{l-1}^{\boldsymbol{\psi}} + \mathbf{A}_{i}^{\boldsymbol{\psi}} \boldsymbol{\sigma}_{l-1}(\mathbf{0}) + \mathbf{b}_{l}, \ l \in \mathbb{N}_{1}^{L}$$

PWA activation map

$$\boldsymbol{\sigma}(\mathbf{z}) = \begin{bmatrix} \sigma(z_1) \\ \vdots \\ \sigma(z_n) \end{bmatrix} = \begin{bmatrix} \frac{z_1(\sigma(z_1) - \sigma(0) + \sigma(0))}{z_1} \\ \vdots \\ \frac{z_n(\sigma(z_n) - \sigma(0) + \sigma(0))}{z_n} \end{bmatrix} = \begin{bmatrix} \frac{\sigma(z_1) - \sigma(0)}{z_1} \\ \vdots \\ \frac{\sigma(z_n) - \sigma(0)}{z_n} \end{bmatrix} \mathbf{z} + \begin{bmatrix} \sigma(0) \\ \vdots \\ \sigma(0) \end{bmatrix}$$

Deep Neural Networks as Piecewise Affine Maps

$$\mathbf{DNN} \quad \boldsymbol{\psi}_{\theta_{\boldsymbol{\psi}}}(\mathbf{x}) = \mathbf{A}_L^{\boldsymbol{\psi}} \mathbf{h}_L^{\boldsymbol{\psi}} + \mathbf{b}_L$$

$$\mathbf{h}_l^{\boldsymbol{\psi}} = \boldsymbol{v} (\mathbf{A}_{l-1}^{\boldsymbol{\psi}} \mathbf{h}_{l-1}^{\boldsymbol{\psi}} + \mathbf{b}_{l-1})$$

PWA map $\psi_{\theta_{\psi}}(\mathbf{x}) = \mathbf{A}_{\psi}(\mathbf{x})\mathbf{x} + \mathbf{b}_{\psi}(\mathbf{x}).$

Local linear dynamics of DNN

At every point x, DNN layer can be represented as:

$$\boldsymbol{\sigma}_l(\mathbf{A}_l^{\boldsymbol{\psi}}\mathbf{x}_l + \mathbf{b}_l) = \boldsymbol{\Lambda}_{\mathbf{z}_l}^{\boldsymbol{\psi}}(\mathbf{A}_l^{\boldsymbol{\psi}}\mathbf{x}_l + \mathbf{b}_l) + \boldsymbol{\sigma}(\mathbf{0}) = \boldsymbol{\Lambda}_{\mathbf{z}_l}^{\boldsymbol{\psi}}\mathbf{A}_l^{\boldsymbol{\psi}}\mathbf{x}_l + \boldsymbol{\Lambda}_{\mathbf{z}_l}^{\boldsymbol{\psi}}\mathbf{b}_l + \boldsymbol{\sigma}_l(\mathbf{0})$$

PWA activation map

$$\boldsymbol{\sigma}(\mathbf{z}) = \begin{bmatrix} \frac{\sigma(z_1) - \sigma(0)}{z_1} & & \\ & \ddots & \\ & & \frac{\sigma(z_n) - \sigma(0)}{z_n} \end{bmatrix} \mathbf{z} + \begin{bmatrix} \sigma(0) \\ \vdots \\ \sigma(0) \end{bmatrix} = \boldsymbol{\Lambda}_{\mathbf{z}}^{\boldsymbol{\psi}} \mathbf{z} + \boldsymbol{\sigma}(\mathbf{0})$$

Local Lipschitz Constants of Deep Neural Networks

Neural Network PWA operator norm:

$$\|\mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x})\|_p = \|\mathbf{A}_{\mathbf{g}}(\mathbf{x})\mathbf{x} + \mathbf{b}_{\mathbf{g}}(\mathbf{x})\|_p$$

Triangle inequality:

$$\frac{\|\mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x})\|_{p} \leq \|\mathbf{A}_{\mathbf{g}}(\mathbf{x})\mathbf{x}\|_{p} + \|\mathbf{b}_{\mathbf{g}}(\mathbf{x})\|_{p},}{\|\mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x})\|_{p}} \leq \|\mathbf{A}_{\mathbf{g}}(\mathbf{x})\|_{p} + \frac{\|\mathbf{b}_{\mathbf{g}}(\mathbf{x})\|_{p}}{\|\mathbf{x}\|_{p}}.$$

Local Lipschitz constant of DNN:

$$\mathcal{K}^{\mathbf{g}}(\mathbf{x}) = ||\mathbf{A}_{\mathbf{g}}(\mathbf{x})||_p + \frac{||\mathbf{b}_{\mathbf{g}}(\mathbf{x})||_p}{||\mathbf{x}||_p}.$$

Stochastic Stability of Deep Markov Models

Definition 3. The stochastic process $\mathbf{x}_t \in \mathbb{R}^n$ is mean-square stable (MSS) if and only if there exists $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$, such that $\lim_{t \to \infty} \mathbb{E}(\mathbf{x}_t) = \mu$, and $\lim_{t \to \infty} \mathbb{E}(\mathbf{x}_t \mathbf{x}_t^T) = \Sigma$.

Converging mean and bounded variance:
$$\mu = \mathbf{f}_{\theta_{\mathbf{f}}}(\mu) = \lim_{t \to \infty} \mathbf{f}_{\theta_{\mathbf{f}}}(\bar{\mathbf{x}}_t) \quad \|\mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x}_t)\|_p < K, \ K > 0, \ \forall t.$$

Sufficient stability conditions of DMM:

$$\|\mathbf{A_f}(\mathbf{x})\|_p < 1$$

$$||\mathbf{A}_{\mathbf{g}}(\mathbf{x})||_p + \frac{||\mathbf{b}_{\mathbf{g}}(\mathbf{x})||_p}{||\mathbf{x}||_p} < K, K > 0,$$

 $\forall \mathbf{x} \in Domain(\mathbf{f}_{\theta_{\mathbf{f}}}(\mathbf{x}), \mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x})).$

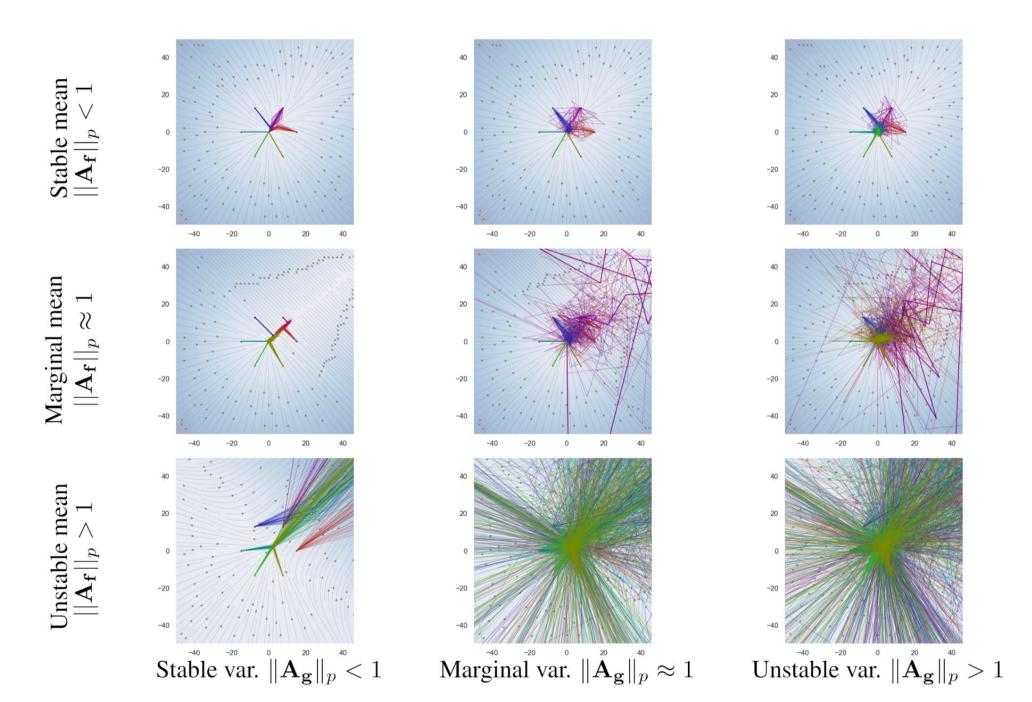
Local Lipschitz constant of DNN:

$$\mathcal{K}^{\mathbf{g}}(\mathbf{x}) = ||\mathbf{A}_{\mathbf{g}}(\mathbf{x})||_p + \frac{||\mathbf{b}_{\mathbf{g}}(\mathbf{x})||_p}{||\mathbf{x}||_p}.$$

Contractive weights and activations imply DMM stability:

$$\|\mathbf{A}_{i}^{\mathbf{f}}\|_{p} < 1, \ ||\mathbf{\Lambda}_{\mathbf{z}_{i}}^{\mathbf{f}}||_{p} \leq 1 \ i \in \mathbb{N}_{1}^{L_{\mathbf{f}}},$$
$$\|\mathbf{A}_{j}^{\mathbf{g}}\|_{p} < c^{\mathbf{A}}, \ ||\mathbf{\Lambda}_{\mathbf{z}_{j}}^{\mathbf{g}}||_{p} \leq c^{\mathbf{\Lambda}}, \ j \in \mathbb{N}_{1}^{L_{\mathbf{g}}},$$
$$\forall \mathbf{x} \in Domain(\mathbf{f}_{\theta_{\mathbf{f}}}(\mathbf{x}), \mathbf{g}_{\theta_{\mathbf{g}}}(\mathbf{x})).$$

Effect of Mean and Variance on Stochastic Stability of Deep Markov Models



Effect of Biases and Depth on the Stability of Deep Markov Models

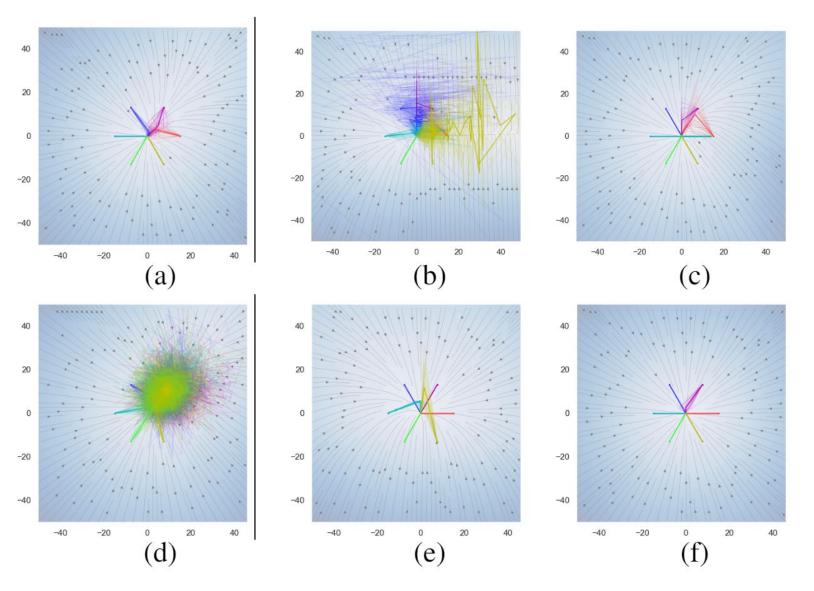


Figure 2: Left panels show the effect of biases using PF regularization and Relu activation ((a) w/o bias, (d) w bias). Right panels show the effect of network \mathbf{f} depths with SVD regularization and Relu: (b) 1 layer, (c) 2 layers, (e) 4 layers, (f) 8 layers.

Stability of Activation Functions

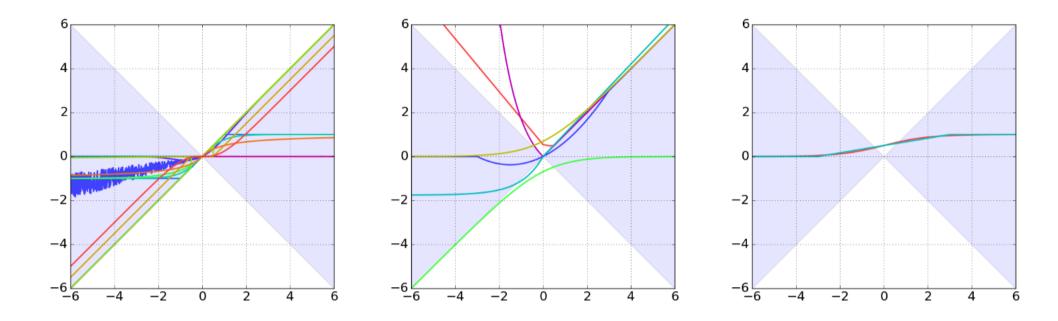
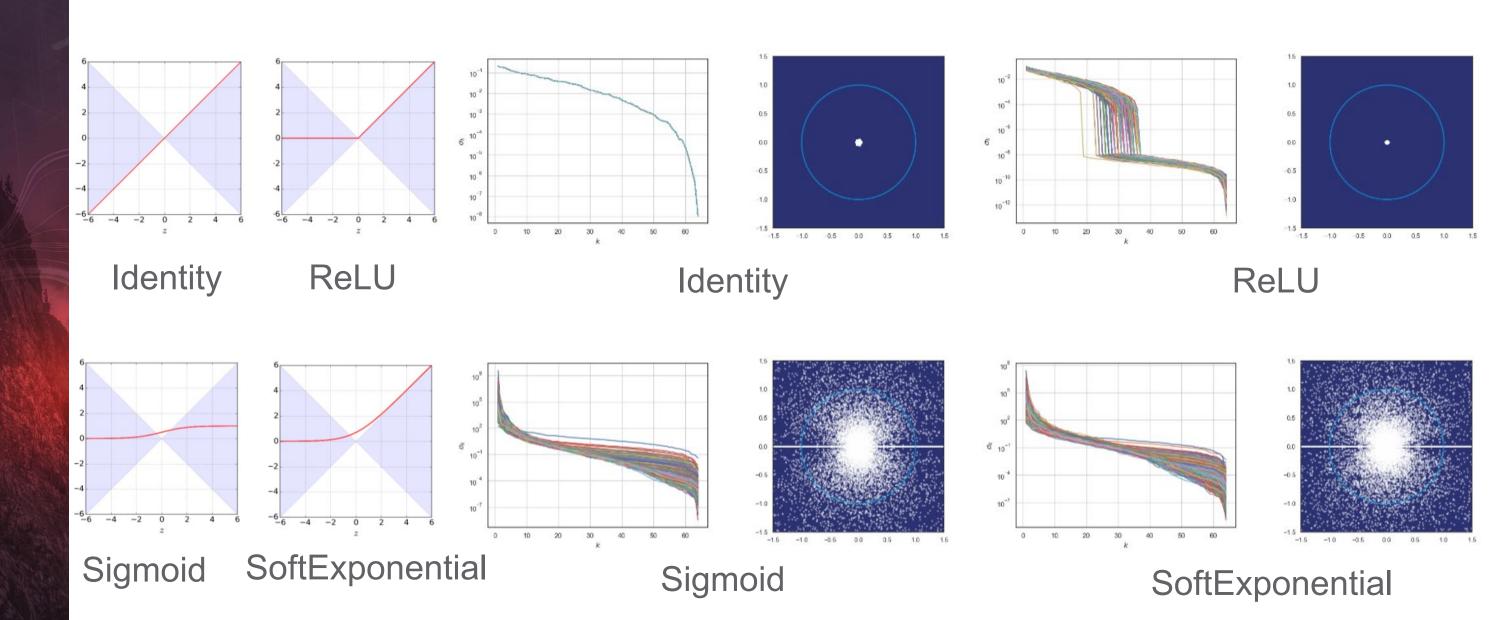


Figure 1: Activation functions with asymptotic stability (left), with unstable regions (middle), and with BIBO stability (right), respectively. Blue areas represent stable regions covering functions with trivial null space and Lipschitz constant $K \leq 1$.

- 1. Globally stable activations: SoftExponential, BLU, PReLU, ReLU, GELU, RReLU, Hardtanh, ReLU6, Tanh, ELU, CELU, Hardshrink, LeakyReLU, Softshrink, Softsign, Tanhshrink
- 2. Activations with unstable regions: APLU, PELU, Sigmoid, Hardsigmoid, Hardswish, SELU, LogSigmoid, Softplus, Hardswish, Sigmoid, Hardsigmoid

Nonlinearity of Deep Neural Networks with Different Activation Functions

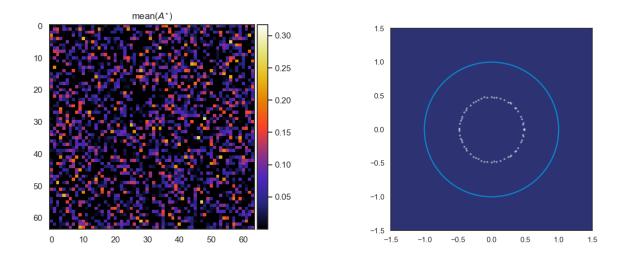


Practical Stability Constraints for DNN and DMM

SVD factorization

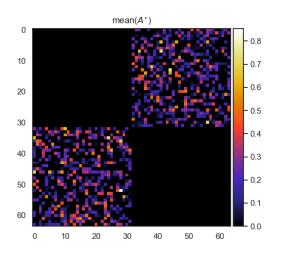
$$\tilde{\Sigma} = \operatorname{diag}(\lambda_{\max} - (\lambda_{\max} - \lambda_{\min}) \cdot \sigma(\Sigma))$$

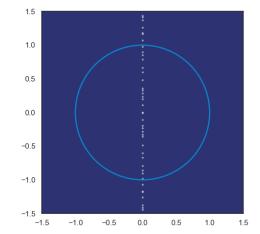
$$\tilde{\mathbf{A}} = \mathbf{U}\tilde{\mathbf{\Sigma}}\mathbf{V}$$



Hamiltonian weight

$$ilde{\mathbf{A}} = egin{bmatrix} \mathbf{0} & \mathbf{A} \ -\mathbf{A}^ op & \mathbf{0} \end{bmatrix}$$





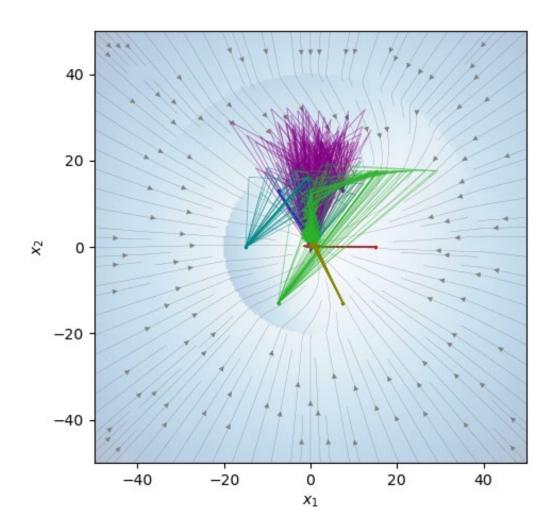
Pytorch implementation: https://github.com/pnnl/slim

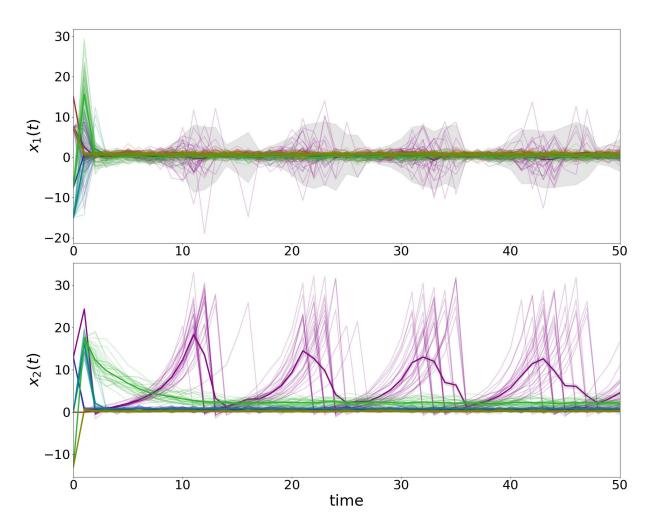
SLIM: Drop-in replacements for PyTorch nn.Linear for stable learning and inductive priors.

Parametric Stability Constraints for DMMs

Constrained operator norms of DMMs:

$$\underline{\mathbf{p}}(\mathbf{x}) < \|\mathbf{A_f}(\mathbf{x})\|_p < \overline{\mathbf{p}}(\mathbf{x})$$





Conclusion

Stability of Deep Markov Models

- Neural Networks as PWA maps
- Contraction of PWA maps
- Banach fixed point theorem
- Operator norm constraints
- Contraction of DMMs

Stable Weights

- Structured linear maps in Pytorch
- https://pnnl.github.io/slim/

Contact

- jan.drgona@pnnl.gov
- https://www.linkedin.com/in/drgona/
- https://twitter.com/jan_drgona

Jan Drgona, Sayak Mukherjee, Jiaxin Zhang, Frank Liu, Mahantesh Halappanavar, On the Stochastic Stability of Deep Markov Models, NeurIPS 2021

