Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift

Presented by Christina Baek

kbaek@andrew.cmu.edu

Yiding Jiang¹

Aditi Raghunathan¹

Zico Kolter^{1,2}

¹Carnegie Mellon University ² Bosch Center for AI

Problem

In practice, machines often need to perform well on distributions that are different from what it has been trained on.

Estimating **out-of-distribution (OOD)** performance is hard because labeled data is expensive.

However, unlabeled data is easier to obtain...

Problem

Say we are given

- a <u>collection of models</u> $\mathscr{H} = \{h_1, h_2, \dots, h_n\}$ trained on in-distribution (ID) data $X_{train}, y_{train} \sim \mathscr{D}_{ID}$
- <u>labeled ID</u> validation data and <u>unlabeled OOD</u> test data $X_{val}, y_{val} \sim \mathcal{D}_{ID}$ and $X_{test} \sim \mathcal{D}_{OOD}$

Can we predict OOD performance of models in \mathcal{H} with only unlabeled data?

Characterizing the Shift

Corollary 1. (Garg, et al. 2022)

Absent assumptions on the classifier f, no method of estimating accuracy will work in all scenarios, i.e., for different nature of distribution shifts.

Simple proof:

If the classifier has no assumptions, accuracy is only identifiable <u>IFF</u> $p_t(y | x)$ is uniquely identified given $p_s(x, y)$ and $p_t(x)$.

Characterizing the Shift

- 1. What are reasonable assumptions we can make about the **distribution shift** and the **behavior of the classifier**?
- 2. Is there an easy way to "check" whether these assumptions hold?

Accuracy on the Line (Miller, et al. 2021)

In popular OOD benchmarks, **ID** and **OOD test accuracy** are **strongly linearly correlated**

*They first scale the accuracies by probit transform $\Phi^{-1}(\ \cdot\)$

Dataset reproduction

- CIFAR10.1, ImageNetV2 [Recht, et al. 2019]
- CIFAR10.2 [Lu, et al. 2020]

Synthetic corruptions

• CIFAR10C [Hendrycks and Dietterich, 2019]

- fMoW-wilds
- RxRx1-wilds
- Camelyon17-wilds
- iWildCam-wilds

		Train	Test		
Satellite Image (x)					
Year / Region (d)	2002 / Americas	2009 / Africa	2012 / Europe	2016 / Americas	2017 / Africa
Building / Land Type (y)	shopping mall	multi-unit residential	road bridge	recreational facility	educational institution

- fMoW-wilds
- RxRx1-wilds
- Camelyon17-wilds
- iWildCam-wilds

- fMoW-wilds
- RxRx1-wilds
- Camelyon17-wilds
- iWildCam-wilds

- fMoW-wilds
- RxRx1-wilds
- Camelyon17-wilds
- iWildCam-wilds

	Test (OOD)		
d = Location 1	d = Location 2	d = Location 245	d = Location 246
<caption></caption>	African Bush Elephant	unknown With the second se	Wild Horse State Great Curassow
	Test (ID)		
d = Location 1	d = Location 2	d = Location 245	
Giraffe	Impala	Sun Bear	

Models

Our model collection ${\mathcal H}$ consists of CNNs and Vision Transformers trained using different

- 1. hyperparameter
- 2. training set size
- 3. training duration

Architecture	Number of models	Architecture	Number of models
Adversarial Inception v3 [46]	1	DenseNet121 [37]	21
AlexNet [45]	1	DenseNet169 [37]	8
BEIT [2]	1	EfficientNetB0 [72]	13
DEIT [2] DoTNot [69]	1	ResNet18 [33]	13
	1	ResNet50 [33]	18
	1	ResNet101 [33]	7
Coal [78]	2	PreActResNet18 [32]	63
ConViT [20]	3	PreActResNet34 [32]	9
ConvNeXT [50]	1	PreActResNet50 [32]	11
CrossViT [8]	9	PreActResNet101 [32]	4
DenseNet [37]	3	ResNeXT $2 \times 64d$ [77]	12
DLA [79]	10	ResNeXT $32 \times 4d$ [77]	8
EfficientNet [72]	1	ResNeXT $4 \times 64d$ [77]	1
HaloNet [75]	1	RegNet X200 [62]	11
NENet [7]	1	RegNet X400 [62]	13
$\mathbf{P}_{ac}\mathbf{N}_{ac}$	10	RegNet Y400 [62]	5
DecNeVT [77]	10	VGG11 [67]	16
	1	VGG13 [67]	13
Inception v3 [/1]	1	VGG16 [67]	13
VGG [67]	<u> </u>	VGG19 [67]	12
		ShuffleNetV2 [53]	56
		ShuffleNetG2 [81]	13
		ShuffleNetG3 [81]	8
		AlexNet [45]	2
		MobileNet [65]	12
		MobileNetV2 [65]	13
		PNASNet-A [48]	13
		PNASNet-B [48]	13
		PNASNet-5-Large [48]	3
		Squeezeinet [39]	3 12
		SEINELIS [42]	15
		DDN24 [11]	20
			ð
		Driny2 [11] Muntlenet [Dena]	2 1
		Vigruenet [Kepo]	1
		Aception [12]	3

Accuracy on the Line (Miller, et al. 2021)

There is a **structure** to the way distributions commonly shift

...but this fact does not solve the problem of **needing OOD labels for accuracy.**

Agreement

Measure the rate at which predictions of two hypotheses agree

Test Input
$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10})$$

Agreement: 60%

Does not need labels!

Agreement-on-the-Line

- Strong Correlation When ID vs OOD accuracy is <u>strongly linearly correlated</u> ($\geq 0.95 R^2$ values), ID vs OOD agreement is also <u>strongly linearly correlated</u>. Additionally, these linear correlations have almost the same slope and bias.
- Weak Correlation When ID vs OOD accuracy is <u>weakly linearly correlated</u> ($\leq 0.75 R^2$ values), ID and OOD agreement is also <u>weakly linearly correlated</u>.

The phenomena only occurs for neural networks

OOD Accuracy Estimation

- 1. Estimate slope and bias by linear regression of ID vs OOD agreement $\Phi^{-1}(\operatorname{Agr}_{OOD}(h, h')) = a \cdot \Phi^{-1}(\operatorname{Agr}_{ID}(h, h')) + b$
- 2. If the linear correlation is strong, we know approximately $\Phi^{-1}(\operatorname{Acc}_{OOD}(h)) = a \cdot \Phi^{-1}(\operatorname{Acc}_{ID}(h)) + b$
- 3. From 1 and 2, note that for any two models $h, h' \in \mathcal{H}$

$$\frac{1}{2} \underbrace{\Phi^{-1}(\operatorname{Acc}_{OOD}(h))}_{\operatorname{unknown}} + \frac{1}{2} \underbrace{\Phi^{-1}(\operatorname{Acc}_{OOD}(h'))}_{\operatorname{unknown}} = \underbrace{\Phi^{-1}(\operatorname{Agr}_{OOD}(h,h')) + a \cdot \left(\frac{\Phi^{-1}(\operatorname{Acc}_{ID}(h)) + \Phi^{-1}(\operatorname{Acc}_{ID}(h'))}{2} - \Phi^{-1}(\operatorname{Agr}_{ID}(h,h'))\right)}_{\operatorname{known}}_{\operatorname{known}}$$

4. Solve system of linear equations for $\Phi^{-1}(Acc_{OOD}(h))$ $\forall h \in \mathscr{H}$

ALine-S: Steps 1-2 ALine-D: Steps 1-4

OOD Accuracy Estimation

Mean Absolute Estimation Error with % as units.

Dataset	ALine-D	ALine-S	ATC [Garg '22]	AC [Hendrycks '17]	DOC [Guillory '17]	Agreement
CIFAR-10.1	1.11	1.17	1.21	4.51	3.87	5.98
CIFAR-10.2	3.93	3.93	4.35	8.23	7.64	5.42
ImageNetV2	2.06	2.08	1.12	66.2	11.50	6.70
CIFAR-10C-Fog	1.45	1.75	1.78	4.47	3.93	3.47
CIFAR-10C-Snow	1.32	1.97	1.31	5.94	5.49	2.57
CIFAR10C-Saturate	0.41	0.77	0.69	2.03	1.51	4.14
fMoW-wilds	1.30	1.44	1.53	2.89	2.60	8.99
RxRx1-wilds	0.27	0.52	2.97	2.46	0.65	8.67
Camelyon17-wilds	5.47	8.31	11.93	13.30	13.57	6.79
iWildCam-wilds	4.95	6.01	12.12	4.46	5.02	7.53

Along One Trajectory

- 1. Train a single ResNet18 model on CIFAR-10.
- 2. Every 5 epochs, save the predictions of the model over CIFAR-10 and CIFAR-10.1 Test.

3. Perform ALine-D