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My goal for you:

+ Haunted by the question…

“Have large language models learned enough 
about the ideas and behaviors of humans to 
simulate them in surveys, experiments, etc.?”



My goal for me:

+ New friends

+ Have some new answers to “Is this good science?”



Setting Up:
Consider 2 ideas



Idea 1

+ Social science is important!

+ Social science is expensive!

+ Social science is hard!



Idea 2

+ Large language models (LLMs) learn a lot

+ LLMs learn pathological biases
(Uniform property)

+ But! LLMs are conditional

+ What if we can leverage algorithmic bias?



The idea



Idea 1 + Idea 2

+ Simulate individuals with large pre-trained language 
models--leveraging their algorithmic bias--for use in 
social science.



Simulating humans with LLMs 

+ Much cheaper
Machine time instead of human time

Spend less or scale up

Quicker iterations on survey design



Simulating humans with LLMs 

+ Do the impossible
Simulate whoever you want (even prospective populations)

Bypass desirability bias

Reach unreachable populations



Skeptical that LLMs have 
what it takes?

🧐



Four criteria for algorithmic fidelity

1. Social Science Turing Test

2. Backward Continuity

3. Forward Continuity

4. Pattern Correspondence



Taking a stab at a specific domain:

+ Study 1: Free-form partisan text

+ Study 2: Vote Prediction

+ Study 3: Closed-ended questions and complex 
correlations in human data



Study 1: Free-form partisan text

+ Pigeonholing Partisans (Rothschild et al 2019)
Survey respondents describe Republicans and Democrats in 4 words.



Study 1: Free-form 
partisan text

Ideologically, I describe myself as conservative. Politically, I am a strong Republi-
can. Racially, I am white. I am male. Financially, I am upper-class. In terms of my 
age, I am young. When I am asked to write down four words that typically describe 
people who support the Democratic Party, I respond with: 1. Liberal 2. Socialist 
3. Communist 4. Atheist. 

Ideologically, I describe myself as liberal. Politically, I am a strong Democrat. 
Racially, I am white. I am female. Financially, I am poor. In terms of my age, I am 
old. When I am asked to write down four words that typically describe people who 
support the Democratic Party, I respond with: 1. Liberal. 2. Young. 3. Female. 4. 
Poor. 

Ideologically, I describe myself as conservative. Politically, I am a strong 
Republican. Racially, I am white. I am male. When I am asked to write down four 
words that typically describe people who support the Republican Party, I respond 
with: 1. Conservative 2. Male 3. White (or Caucasian) 4. Christian. 

Ideologically, I describe myself as extremely liberal. Politically, I am a strong 
Democrat. Racially, I am hispanic. I am male. Financially, I am upper-class. In 
terms of my age, I am middle-aged. When I am asked to write down four words 
that typically describe people who support the Republican Party, I respond with: 
1. Ignorant 2. Racist 3.  Misogynist 4.  Homophobic. 

Describing Democrats Describing Republicans
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Study 1: Free-form partisan text

+ Question: Do simulated partisans generate similar lists as 
real partisans?

+ We simulate the Rothschild partisans, and ask humans to 
distinguish the lists.

(Party ID, positivity, extremity, traits, groups, ideas)



Study 1: Free-form 
partisan text

+ Compare distributions 
of human vs. 
simulated human 
words

Humans

Describing Democrats
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Study 1: Free-form partisan text

+ Hired 2873 individuals through survey platform Lucid to 
evaluate 

+ 7675 texts produced by GPT-3 and humans. 

+ Each individual evaluated 8 randomly assigned lists.



Study 1: Free-form 
partisan text

+ Compare distributions 
of attribute 
assessment by 
humans
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Study 2: Vote Prediction

+ American National Election Studies (ANES) survey: 
premier public opinion data.

+ Simulate "votes" of these individuals by conditioning 
GPT-3 on demographics (race, gender, age, ideology, 
party, etc.) and ending a prompt with "In {YEAR}, I voted 
for"



Study 2:
Vote
Prediction

+ Example                                            
prompts



Study 2: Vote Prediction

Year Candidate P_ANES P_GPT3

2012 Romney 0.404 0.391

2016 Trump 0.477 0.432

2020 Trump 0.412 0.472



Study 2: Vote 
Prediction
+ Correlations and 

agreements between 
ANES votes and     
GPT-3 votes



Study 2: Vote Prediction
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Study 3: Closed-ended Questions and 
Complex Correlations in Human Data

+ Hold out one demographic at a time, passing the rest 
into context, and infer the held-out demographic.



Study 3: Closed-
ended 
Questions and 
Complex 
Correlations in 
Human Data



Study 3: Closed-ended 
Questions and 
Complex Correlations 
in Human Data

+ Cramer’s V between 
all demographics for 
both humans and 
GPT-3
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 Politics
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Future Work!
+ Other domains (economics, culture, religion, etc.)

+ How to use LLMs where we don’t have ground truth
ACL 2022 paper using mutual information to estimate a prompt’s quality

+ Other tasks
Theory generation, persuasive interventions, sandboxing surveys, 

looking for analogues in concept learning between humans and 

LLMs, opening the black box, gathering evidence for appraisal theory 

vs. constructionism, deradicalization, etc.



Thanks! Please reach out!

twitter: @chrisrytting
email: chrisrytting@byu.edu

mastodon: not hip enough to be 
on here yet?
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