Is this Encoder Mine? On Stealing and Defending Self-Supervised Encoders

Adam Dziedzic Deep Learning: Classics and Trends (DLCT) November 11th, 2022

Annotate Data Using Machine Learning APIs

Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, Nicolas Papernot "Increasing the Cost of Model Extraction with Calibrated Proof of Work" [ICLR 2022 SPOTLIGTH].

Train Models for Machine Learning Services

Train Models for Machine Learning Services

Stealing Machine Learning Models

(is incentives: 1. Steal model with a lower training cost 2. Reconnaissance for launching further attacks

Degrees of Access to Your Knowledge

Query Access

Machine Learning API

Degrees of Access to Your Knowledge

Degrees of Access to Your Knowledge Query Data Access Access

and labeling

light data collection + tuning

Least amount of effort

Threat of Stealing Self-Supervised Encoders

Practical and Growing Threat

ML Service Providers have already commenced offering SSL Encoders over paid APIs.

> SSL is becoming the dominant paradigm for important ML domains like Vision and NLP.

co:here

Cohere Raises \$40 Million in Series A Financing to Make Natural Language Processing Safe and Accessible to Any Business

Build next-gen apps with OpenAI's powerful models.

OpenAI's API provides access to GPT-3, which performs a wide variety of natural language tasks, and Codex, which translates natural language to code.

GET STARTED

READ DOCUMENTATION

clarifai exposes a visual recognition model for returning 768-dimensional numerical vectors that represent the items in images and video.

Efficient Attacks & Inadequate Defenses

 Attacks against SSL models are query efficient: number of stealing queries < 1/5th number of training data points.
 Existing defenses against stealing supervised models are inadequate for SSL models.

16

Siamese Framework for Stealing Encoders

Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, Nicolas Papernot "On the Difficulty of Defending Self-Supervised Learning against Model Extraction" [ICML 2022].

Impact of Loss Functions on Encoder Stealing

	CIFAR10	Victim	SVHN Victim		
Loss\Downstream Task	STL10	CIFAR10	STL10	CIFAR10	
Victim baseline	67.9	79.0	50.6	57.5	
Mean Squared Error	64.8	75.5	46.3	51.2	
InfoNCE	64.6	75.5	50.4	56.3	
SoftNN	67.1	76.9	44.6	48.4	
SupCon (uses labels)	63.1	78.5	33.9	42.3	
Wasserstein	50.8	63.9	40.1	46.4	
Barlow	26.6	26.9	16.3	17.9	

Impact of Loss Functions on Encoder Stealing

	CIFAR10	Victim	SVHN Victim		
Loss\Downstream Task	STL10	CIFAR10	STL10	CIFAR10	
Victim baseline	67.9	79.0	50.6	57.5	
Mean Squared Error	64.8	75.5	46.3	51.2	
InfoNCE	64.6	75.5	50.4	56.3	
SoftNN	67.1	76.9	44.6	48.4	
SupCon (uses labels)	63.1	78.5	33.9	42.3	
Wasserstein	50.8	63.9	40.1	46.4	
Barlow	26.6	26.9	16.3	17.9	

Contrastive losses perform the best for training & stealing encoders

Stealing a Pre-trained ImageNet Encoder

Downstream Task

# Queries	Data for Stealing	CIFAR10	CIFAR100	STL10	SVHN	F-MNIST
Victim ImageNet Encoder Baseline		90.33	71.45	94.9	79.39	91.9
60K	CIFAR10	83.3	57.0	71.2	73.8	90.7
50K	SVHN	73.3	47.1	58.2	78.8	90.4
250K	SVHN	77.1	52.6	61.9	80.2	91.4
50K	ImageNet	65.2	35.1	64.9	62.1	88.5
250K	ImageNet	80.0	57.0	85.8	71.5	90.2

Stealing a Pre-trained ImageNet Encoder

Downstream Task

# Queries	Data for Stealing	CIFAR10	CIFAR100	STL10	SVHN	F-MNIST
Victim ImageNet Encoder Baseline		90.33	71.45	94.9	79.39	91.9
60K	CIFAR10	83.3	57.0	71.2	73.8	90.7
50K	SVHN	73.3	47.1	58.2	78.8	90.4
250K	SVHN	77.1	52.6	61.9	80.2	91.4
50K	ImageNet	65.2	35.1	64.9	62.1	88.5
250K	ImageNet	80.0	57.0	85.8	71.5	90.2

number of stealing queries < 1/5th number of training data points

Defenses against Model Stealing Active θ $u = -\nabla_w L(\cdot, y)$ $a = -\nabla_w L(\cdot, y)$

Poison Attacker's Objective

Prediction Poisoning [Orekondy et al. 2020]

Poison Attacker's Objective

Prediction Poisoning [Orekondy et al. 2020]

Detect Attack & Stop Responding PRADA [Juuti et al. 2019]

Poison Attacker's Objective

Prediction Poisoning [Orekondy et al. 2020]

Detect Attack & Stop Responding PRADA [Juuti et al. 2019]

Poison Attacker's Objective

Prediction Poisoning [Orekondy et al. 2020]

Detect Attack & Stop Responding PRADA [Juuti et al. 2019]

Embed Rotation Task to Defend Encoders

Transferability of the Rotation Watermark

Intuition behind Dataset Inference

Supervised

Intuition behind Dataset Inference

Supervised

Dataset Inference on Victim Encoder

Steal the Victim Encoder

Ownership Resolution: Stolen Encoder 2 Steal Training Inference Private Train 3 f_{s} Data D_P Victim f_{ν} $h_{D_{P1}}$ $p(h_{D_{P_1}}) > p(h_{D_N})$ **GMM Density** D_{P1} Estimator \mathcal{E}_{s} h_{D_N} Stolen f_s D_{P2} $h_{D_{P1}}$ h_{D_N} **GMM Density** Estimator \mathcal{E}_V Test Data D_N $p(h_{D_{P_1}}) > p(h_{D_N})$

Ownership Resolution: Independent Encoder

Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis Cattan, Franziska Boenisch, Nicolas Papernot *"Dataset Inference for Self-Supervised Models"* [NeurIPS 2022].

Empirical Evaluation

p-value < 5e-2 denotes a stolen/victim encoder, otherwise the t-test is inconclusive and the encoder is marked as independent

Victim's private data:			CIFAR10			SVHN			ImageNet	
Encoder	Obfuscate	D	p-value	$\Delta \mu$	D	p-value	$\Delta \mu$	D	p-value	$\Delta \mu$
f_v	N/A	CIFAR10	4.52e-17	10.73	SVHN	9.69e-227	19.93	ImageNet	4.18e-36	28.39
f_s		SVHN CIFAR10 STL10 ImageNet	3.97e-2 8.73e-7 1.04e-2 6.34e-3	3.04 5.09 3.42 3.47	SVHN CIFAR10 STL10 ImageNet	1.05e-75 1.19e-17 1.65e-11 5.32e-8	11.75 6.22 4.32 5.52	SVHN CIFAR10 STL10 ImageNet	3.33e-4 1.47e-4 1.09e-4 3.14e-5	14.79 10.19 15.13 16.53
f_s	Shuffle Pad Transform	CIFAR10 CIFAR10 CIFAR10 CIFAR10	1.72e-6 3.34e-6 6.81e-7	4.98 4.84 5.11	CIFAR10 CIFAR10 CIFAR10 CIFAR10	4.79e-16 7.81e-18 5.32e-15	5.38 7.98 5.21	CIFAR10 CIFAR10 CIFAR10 CIFAR10	6.72e-4 2.31e-3 8.45e-3	10.21 7.23 8.98
f_i		CIFAR100 SVHN	3.67e-1 2.96e-1	-0.37 0.98	CIFAR100 CIFAR10	2.13e-1 3.56e-1	0.68 0.84	CIFAR100 SVHN	7.89e-2 5.42e-1	4.56 0.69

Empirical Evaluation

p-value < 5e-2 denotes a stolen/victim encoder, otherwise the t-test is inconclusive and the encoder is marked as independent

Victim's private data:		CIFAR10				SVHN	7		ImageNet	
Encoder	Obfuscate	D	p-value	$\Delta \mu$	D	p-value	$\Delta \mu$	D	p-value	$\Delta \mu$
f_v	N/A	CIFAR10	4.52e-17	10.73	SVHN	9.69e-227	19.93	ImageNet	4.18e-36	28.39
f_s		SVHN CIFAR10 STL10 ImageNet	3.97e-2 8.73e-7 1.04e-2 6.34e-3	3.04 5.09 3.42 3.47	SVHN CIFAR10 STL10 ImageNet	1.05e-75 1.19e-17 1.65e-11 5.32e-8	11.75 6.22 4.32 5.52	SVHN CIFAR10 STL10 ImageNet	3.33e-4 1.47e-4 1.09e-4 3.14e-5	14.79 10.19 15.13 16.53
f_s	Shuffle Pad Transform	CIFAR10 CIFAR10 CIFAR10 CIFAR10	1.72e-6 3.34e-6 6.81e-7	4.98 4.84 5.11	CIFAR10 CIFAR10 CIFAR10 CIFAR10	4.79e-16 7.81e-18 5.32e-15	5.38 7.98 5.21	CIFAR10 CIFAR10 CIFAR10 CIFAR10	6.72e-4 2.31e-3 8.45e-3	10.21 7.23 8.98
f_i	N/A	CIFAR100 SVHN	3.67e-1 2.96e-1	-0.37 0.98	CIFAR100 CIFAR10	2.13e-1 3.56e-1	0.68 0.84	CIFAR100 SVHN	7.89e-2 5.42e-1	4.56 0.69

Empirical Evaluation: Ownership Resolution

Obfuscations - the representation modified by an adversary:

(1) Shuffle the elements in the representation vectors, (2) Pad with or add constant values at random positions, and (3) Apply a linear Transform.

Victim's p	private data:		CIFAI	R10		SVHN			ImageNet	
Encoder	Obfuscate	D	p-value	$\Delta \mu$	D	p-value	$\Delta \mu$	D	p-value	$\Delta \mu$
f_v	N/A	CIFAR10	4.52e-17	10.73	SVHN	9.69e-227	19.93	ImageNet	4.18e-36	28.39
f_s		SVHN CIFAR10 STL10 ImageNet	3.97e-2 8.73e-7 1.04e-2 6.34e-3	3.04 5.09 3.42 3.47	SVHN CIFAR10 STL10 ImageNet	1.05e-75 1.19e-17 1.65e-11 5.32e-8	11.75 6.22 4.32 5.52	SVHN CIFAR10 STL10 ImageNet	3.33e-4 1.47e-4 1.09e-4 3.14e-5	14.79 10.19 15.13 16.53
f_s	Shuffle Pad Transform	CIFAR10 CIFAR10 CIFAR10	1.72e-6 3.34e-6 6.81e-7	4.98 4.84 5.11	CIFAR10 CIFAR10 CIFAR10	4.79e-16 7.81e-18 5.32e-15	5.38 7.98 5.21	CIFAR10 CIFAR10 CIFAR10	6.72e-4 2.31e-3 8.45e-3	10.21 7.23 8.98
f_i	N/A	CIFAR100 SVHN	3.67e-1 2.96e-1	-0.37 0.98	CIFAR100 CIFAR10	2.13e-1 3.56e-1	0.68 0.84	CIFAR100 SVHN	7.89e-2 5.42e-1	4.56 0.69

Measuring Quality of Stolen Encoders

 $S(\cdot, f_v)$ and $C(\cdot, f_v)$ represent the Mutual Information Score and Cosine Similarity

Score	Number of Queries								
	500	5K	7K	8K	9K	10K	20K	30K	50K
$S(\cdot, f_v)$	0.00	0.11	0.14	0.53	0.57	0.69	0.92	0.93	0.94
$C(\cdot, f_v)$	0.24	0.40	0.46	0.47	0.49	0.52	0.58	0.63	0.69
p-values	6.89e-1	3.51e-1	4.72e-1	9.87e-2	6.23e-2	5.82e-3	2.31e-7	2.11e-10	1.19e-17
	5K	10K	20K	30K	40K	50K	100K	200K	250K
$S(\cdot, f_v)$	0.62	0.79	0.79	0.81	0.82	0.84	0.85	0.85	0.86
$C(\cdot, f_v)$	0.25	0.32	0.33	0.36	0.35	0.38	0.38	0.40	0.39
p-values	1.23e-1	7.91e-2	6.53e-2	8.98e-2	4.52e-2	1.10e-2	2.11e-3	1.11e-3	3.33e-4

High Performance of Stolen Self-Supervised Encoders

High Performance of Stolen Self-Supervised Encoders Watermarking-based Defense

High Performance of Stolen Self-Supervised Encoders Watermarking-based Defense

Reactive Dataset Inference Defense

High Performance of Stolen Self-Supervised Encoders

Reactive Dataset Inference Defense

Watermarking-based Defense

Design New Attacks & Defenses

Sadam-dziedzic.com adam.dziedzic@utoronto.ca