

# Training Trajectories of Language Models Across Scales

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru,

Danqi Chen, Luke Zettlemoyer, Ves Stoyanov

mengzhou@princeton.edu

🗲 @xiamengzhou

## Mengzhou Xia

- Third year PhD student at Princeton
- Advised by Prof. Danqi Chen
- Interested in efficient methods in LLMs
  - Less training data
  - Less compute
  - Scale down
- Master at CMU, advised by Prof. Graham Neubig
- Interned at MSR and Meta
- 2022 Bloomberg Fellowship recipient



When given a language model, we consider ..



How do models of different scales learn during pre-training?

**Training trajectories!** 

### **OPT Models**

- Autoregressive pretrained language models of various sizes (125m, 1.3b, 6.7b, 13b, 30b, 175b)
  - Data: all models are trained with <u>300B tokens</u> (180B corpora, around 1.67 epochs)
  - **Other hyperparameters:** Note that different-sized models are trained with different numbers of steps, different LRs (<u>not the main focus</u>).

| Model | #L | #H | d <sub>model</sub> | LR         | Batch      |
|-------|----|----|--------------------|------------|------------|
| 125M  | 12 | 12 | 768                | $6.0e{-4}$ | 0.5M       |
| 350M  | 24 | 16 | 1024               | $3.0e{-4}$ | 0.5M       |
| 1.3B  | 24 | 32 | 2048               | $2.0e{-4}$ | 1 <b>M</b> |
| 2.7B  | 32 | 32 | 2560               | $1.6e{-4}$ | 1 <b>M</b> |
| 6.7B  | 32 | 32 | 4096               | $1.2e{-4}$ | 2M         |
| 13B   | 40 | 40 | 5120               | $1.0e{-4}$ | 4M         |
| 30B   | 48 | 56 | 7168               | $1.0e{-4}$ | 4M         |
| 66B   | 64 | 72 | 9216               | $0.8e{-4}$ | 2M         |
| 175B  | 96 | 96 | 12288              | $1.2e{-4}$ | 2M         |

- <u>OPT checkpoints up to 13B</u>
- <u>Pythia checkpoints from EleutherAI</u>

## What we are looking at?

• Pre-training objective: token-level predictions of language distributions

$$p(x_t \mid x_1, x_2, \cdots, x_{t-1}) \begin{cases} p(\text{be} \mid \text{I want to}) \\ p(\text{doctor} \mid \text{I want to be}) \\ \bullet \bullet \bullet \end{cases}$$
  
Generalization of pretraining: perplexity of generated sequences  
$$p(\overline{x_1, x_2, \cdots, x_t})$$

• Generalization to downstream tasks: in-context learning Accuracy

We consider all these metrics as model behaviors# Tokens?What property do model behaviors align with across scales?FLOPs?Perplexity?

## Validation Perplexity



- The validation set of the pretraining task consists of 28 datasets covering a wide range of topics, e.g., wiki, stories, opensubtitle.
- General language modeling capabilities

## What we are looking at?



• Pre-training objective: token-level predictions

 $p(x_t \mid x_1, x_2, \cdots, x_{t-1}) \begin{cases} p(be \mid I \text{ want to}) \\ p(doctor \mid I \text{ want to be}) \\ \bullet \bullet \bullet \end{cases}$ 

- Generalization of pretraining: sequence-level generation  $p(\overline{x_1, x_2, \cdots, x_t})$
- Generalization to downstream tasks: in-context learning
   Accuracy

We consider all these metrics as model behaviors

Token-level predictions on language distributions

#### **OPT Models PPLs**



PPL of human corpora decreases as training progresses, doe it mean all tokens' PPLs decrease?

## Categorize tokens based on its perplexity trend

A single PPL(x|c) is very unstable

- Given a perplexity series  $PPL_{t1}(x|c), PPL_{t2}(\overline{x|c}), \cdots, PPL_{tn}(x|c)$
- We categorize each series to a
  - Stagnated trend (already learned)
  - Downward trend (still learning)
  - Upward trend (unlearning)
- By fitting the series with linear regression
- We cut first P% of training as it always shows a downward trend (P=10)



## The percentage of these tokens across scales



• More tokens stop learning (stagnated) as model trains

## The percentage of these tokens across scales



- More tokens stop learning (stagnated) as model trains
- Fewer tokens present a downward/upward trend as model trains

## The percentage of these tokens across scales



- More tokens stop learning (stagnated) as model trains
- Fewer tokens present a downward/upward trend as model trains
- 8-11% tokens present an upward trend after 10% of training
- Smaller models has fewer tokens that present a clear trend, e.g. 125M



• Yes, these tokens are truly stagnated in training



• Yes, these tokens are truly stagnated in training



- Yes, these tokens are truly stagnated in training
- These 8.8% tokens eventually stagnated in larger models but not in smaller models



- Yes, these tokens are truly stagnated in training
- These 8.8% tokens eventually stagnated in larger models but not in smaller models



- Yes, these tokens are truly stagnated in training
- These 8.8% tokens eventually stagnated in larger models but not in smaller models
- These 6.8% tokens only stagnate in 175B model but not in smaller models



- Yes, these tokens are truly stagnated in training
- These 8.8% tokens eventually stagnated in larger models but not in smaller models
- These 6.8% tokens only stagnate in 175B model but not in smaller models
- The perplexity of these tokens do not align with FLOPs well



• Similarly, these tokens do present an upward trend



• Similarly, these tokens do present an upward trend



- Similarly, these tokens do present an upward trend
- It shows a downward trend in a smaller model, and a double-descent trend in larger models



- Similarly, these tokens do present an upward trend
- It shows a downward trend in a smaller model, and a double-descent trend in larger models
- It shows a downward or downward/upward trend in smaller models

## When plot against validation perplexity ... (x: log scale)



It aligns with validation PPL in a size agnostic way! Except for 9.4% tokens in 1.3B model

## Perplexity Increase...



- These two sets of tokens do not overlap with each other and we didn't find any pattern
- It seems that perplexity increase happens for different sets of tokens throughout training
- Future work: Why does it happen? Is it really necessary for it to happen?

#### Further dissecting what these tokens are



They are not a particular type of POS.

The occurrence is also agnostic of token positions.

It should a property of language (context, token), but beyond my comprehension.

## Perplexity of Generated Sequences

## Inverse scaling in language modeling

- A larger model has a lower perplexity on human texts, what do smaller models have lower perplexity on?
- Noise? In correct options in downstream tasks?



Both noisy data and incorrect options follow a normal scaling pattern.

We decode these sentences by contrasting two differently-sized models

$$p'_{i} = \lambda_{1} \cdot p_{s}(x_{i}|x_{< i}) + \lambda_{2} \cdot p_{l}(x_{i}|x_{< i})$$
A small model's A large model's next token prediction A large model's next token prediction

 $\lambda_1=1, \lambda_2=-1$  ~~ Maximizing small model's prob and minimizing large model's prob

Similar to Li et al. 2022, but does not require any hyperparameter tuning.

#### Do the $p_s - p_l$ generations follow an inverse scaling trend?





#### <u>Yes, it does!</u>

#### Do the $p_s - p_l$ generations follow an inverse scaling trend?



<u>Other generations show a more</u> <u>flat trend or downward trend</u>

#### What are the trajectories like for these generations?



#### What are the trajectories like for these generations?



Downward trend!

### Similar trend with GPT-NEO



Distribution shift happens systematically!

## What are the generated sequences like?

| Dist.       | Greedy Search                                                                                                                                                                                                                   | Nucleus Sampling                                                                                                                                                                                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Fortunately, the day wasn't all                                                                                                                                                                                                 | Fortunately, the day wasn't all                                                                                                                                                                                                                                 |
| $p_s - p_l$ | that great. The sun was setting and the sun was falling.<br>I went to bed and woke my husband, who was asleep in<br>his bed, to find that I was still asleep in the middle of the<br>night with him. He was still awake when we | that good when the computer said doom and gloom about<br>me. Sure enough, because of our stubborn attempt at<br>terrorizing him via cyberbackup (which relied heavily<br>on computer traffic management (VCMD) to ensure my<br>identity), I was able fix my old |

The generations are grammatically correct, fluent, but contains hallucinations.

When p\_s > p\_t, the next tokens are grammatically correct but not correct in commonsense.

## What are the generated sequences like?

| Dist.                  | Greedy Search                                                                                                                                                                                                                                                                                  | Nucleus Sampling                                                                                                                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{p_l - p_s}$ | bad news. The U.N.'s Intergovernmental Panel on Climate<br>Change released a landmark study showing that we have<br>12 years to limit climate catastrophe. And a group of<br>young activists filed a landmark climate lawsuit in federal<br>district court, demanding that the government take | bad for Iowa fans. Tight end C. J. Fiedorowicz decided,<br>for what has to be the millionth time now, to use Twitter<br>as his own personal slogan board, and this time he decided<br>to riff off the famous Bugs Bunny |

Amazing generation quality when decoding with p\_l-p\_s, better than simply generate with p\_l.

PPL of generated sequences vs. Validation PPL



It largely aligns with validation perplexity except edge cases like p\_s - p\_l

# In-context Learning

#### ICL accuracy vs. FLOPs/Validation PPL



- ICL: 2-shot over 74 BigBench Tasks
- Accuracy aligns with Validation PPL regardless of model sizes

#### Emergent tasks are continuous on trajectories.



## Conclusion

- When a large/small model achieve the same perplexity, their behavior/predictions are very similar, if not identical.
  - Perplexity of next token prediction of different trends
  - Perplexity of generated sequences
  - In-context learning
- It's not the model size, or training flops that determine model behaviors, but the perplexity, and scaling up is a way to effectively reduce perplexity

#### Future Work

More model behaviors on trajectories

• More fine-grained analysis on specific tasks? COT?

#### Double Descent in Pre-training

• Why does it happen and does it have to happen?

#### Initialization for larger models

• Given two models of different sizes have the same perplexity, can we learn how to map the parameters of a small model to a large model for training efficiency?

#### Suboptimal distribution

• If we know the distribution of a small model is suboptimal, can we incorporate the information when training a large model to enhance training efficiency?