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When given a language model, we consider ..
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How do models of different scales learn during pre-training?

Training trajectories!



OPT Models

e Autoregressive pretrained language models of various sizes (125m, 1.3b, 6.7b, 13b, 30b, 175b)
o Data: all models are trained with 300B tokens (180B corpora, around 1.67 epochs)
o Other hyperparameters: Note that different-sized models are trained with different
numbers of steps, different LRs (not the main focus).

Model #L #H dumogel LR Batch
125M 12 12 768 6.0e—4 0.5M

350M 24 16 1024 3.0e—4 0.5M e OPT checkpoints up to 13B
1.3B 24 32 2048 2.0e—4 IM e DPythia checkpoints from EleutherAl
208 32 32 2560 1.6e—4 1M

6.7B 32 32 4096 1.2e—4 M
13B 40 40 5120 1.0e—4 4M
30B 48 56 7168 1.0e—4 4M
66B 64 72 9216 0.8e—4 2M
175B 96 96 12288 1.2e—4 M



https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/README.md
https://github.com/EleutherAI/pythia

What we are looking at?

e DPre-training objective: token-level predictions of language distributions

p(be | I want to)
p(xe | T1, 29, 1) p(doctor | T want to be)

e Generalization of pretraining: perplexity of generated sequences

p($17$27 o 7xt)

e Generalization to downstream tasks: in-context learning

Accuracy
We consider all these as # Tokens?
What property do model behaviors align with across scales? FLOPs?

Perplexity?




Validation Perplexity
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e The validation set of the pretraining task consists of 28 datasets
covering a wide range of topics, e.g., wiki, stories, opensubtitle.
e General language modeling capabilities
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e DPre-training objective: token-level predictions

p(be | I want to)

p(xe | T1, 29, 1) {p(doctor | T want to be)

e Generalization of pretraining: sequence-level generation

p(x17x27 o 7xt)

e Generalization to downstream tasks: in-context learning

Accuracy

We consider all these metrics as model behaviors




Token-level predictions
on language distributions



OPT Models PPLs

Corpora PPL

p(xla Loy« 7£Ct)

Validation PPL

Single next-word prediction PPL

p(be | I want to)
p(doctor | T want to be)
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PPL of human corpora decreases as training progresses,
doe it mean all tokens’ PPLs decrease?



Categorize tokens based on its pe

rplexity trend

A single PPL(x|c) is very unstable

e Given a perplexity series PPL; (z|c), PPLy(x

e We categorize each series to a

o Stagnated trend (already learned)
o Downward trend (still learning)
o Upward trend (unlearning)

e By fitting the series with linear regression

lc), -+, PPLy,(z|c)

e We cut first P% of training as it always shows a downward trend (P=10)

Stagnated trend




The percentage of these tokens across scales
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e More tokens stop learning (stagnated) as model trains



The percentage of these tokens across scales
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e More tokens stop learning (stagnated) as model trains

e Fewer tokens present a downward/upward trend as model trains



The percentage of these tokens across scales

Tokens that PPL Stagnates Tokens that PPL Increases

Tokens that PPL Decreases

15%

10%

— ]

Percentage of Tokens
(=)
(9,]
8
Percentage of Tokens

Percentage of Tokens
N w
o o
X R

—e— 125m —e— 13b 5%

5% —e— 1.3b —e— 30b 10%
—— 6.7b —e— 175b

0% 0% 0%

10% 40%

Percentage of Training

70% 10% 40%

Percentage of Training

70% 10%

More tokens stop learning (stagnated) as model trains

40%
Percentage of Training

Fewer tokens present a downward/upward trend as model trains
8-11% tokens present an upward trend after 10% of training
Smaller models has fewer tokens that present a clear trend, e.g. 125M

70%



Perplexity of stagnated tokens
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e Yes, these tokens are truly stagnated in training



Perplexity of stagnated tokens
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What about these 8.8% tokens that stagnated after
10% of 1.3b model’s training?

Yes, these tokens are truly stagnated in training



Perplexity of stagnated tokens
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e Yes, these tokens are truly stagnated in training
e These 8.8% tokens eventually stagnated in larger models but not in smaller models



Perplexity of stagnated tokens
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e Yes, these tokens are truly stagnated in training
e These 8.8% tokens eventually stagnated in larger models but not in smaller models



Perplexity of stagnated tokens
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e Yes, these tokens are truly stagnated in training
e These 8.8% tokens eventually stagnated in larger models but not in smaller models
e These 6.8% tokens only stagnate in 175B model but not in smaller models



Perplexity of stagnated tokens
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Yes, these tokens are truly stagnated in training

These 8.8% tokens eventually stagnated in larger models but not in smaller models
These 6.8% tokens only stagnate in 175B model but not in smaller models

The perplexity of these tokens do not align with FL.OPs well




Perplexity of tokens with an upward trend
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e Similarly, these tokens do present an upward trend



Perplexity of tokens with an upward trend
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e Similarly, these tokens do present an upward trend



Perplexity of tokens with an upward trend
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e Similarly, these tokens do present an upward trend
e It shows a downward trend in a smaller model, and a double-descent trend in larger models



Perplexity of tokens with an upward trend
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e Similarly, these tokens do present an upward trend
e It shows a downward trend in a smaller model, and a double-descent trend in larger models
e It shows a downward or downward/upward trend in smaller models



When plot against validation perplexity ... (x: log scale)
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It aligns with validation PPL in a size agnostic way!

Except for 9.4% tokens in 1.3B model



Perplexity Increase...
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11.1%

10

1
1
1
1.5 1.4 1.3 1.2 1.1 1.0 0.9 1.5 1.4 1.3 1.2 1.1 1.0 0.9
Validation PPL Validation PPL

e These two sets of tokens do not overlap with each other and we didnt find any pattern
e It seems that perplexity increase happens for different sets of tokens throughout training
e Future work: Why does it happen? Is it really necessary for it to happen?



Further dissecting what these tokens are

Percentage by POS tags
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The occurrence is also agnostic of token

They are not a particular type of POS. O
positions.

It should a property of language (context, token), but beyond my
comprehension.



Perplexity of Generated Sequences



Inverse scaling in language modeling

A larger model has a lower perplexity on human texts, what do smaller

2.5 '\ —— correct options
' e --- incorrect options

125M 1.3B 6.7B 13B 30B 175B

o
models have lower perplexity on?
e Noise? In correct options in downstream tasks?
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Model Size

Model Size

Both noisy data and incorrect options follow a normal scaling pattern.



We decode these sentences by contrasting two differently-sized models

Dy = A1 - ps(x|T<) + Ao - pr(xi]T<4)

/ /

A small model’s A large model’s
next token prediction next token prediction
A\ = 1, Ny = —1 Maximizing small model’s prob and

minimizing large model’s prob

Similar to Li et al. 2022, but does not require any hyperparameter tuning.



Do the Ps — DI generations follow an inverse scaling trend?
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Yes, it does!




Do the Ps — DI generations follow an inverse scaling trend?

m 125Mfinal ckpt m 1.3Bfinal ckpt m 6.7B final ckpt m 13Bfinal ckpt m 30B final ckpt
—— 125M intermediate ckpts —— 1.3B intermediate ckpts =~ —— 6.7B intermediate ckpts —— 13B intermediate ckpts —— 30B intermediate ckpts

Nucleus Sampling

_, 100
(o
o 50
Model Size
Ps — P Ps Ps + pi Pi Pi— Ps

Closer to language distribution

Other generations show a more
flat trend or downward trend




What are the trajectories like for these generations?

m 125Mfinal ckpt m 1.3Bfinal ckpt m 6.7B final ckpt m 13Bfinal ckpt m 30B final ckpt
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125M stalls at this suboptimal distribution but other
models shift away from it!

Ps —Pi



What are the trajectories like for these generations?

m 125M final ckpt m 1.3Bfinal ckpt m 6.7Bfinal ckpt m 13Bfinal ckpt m 30B final ckpt
—— 125M intermediate ckpts —— 1.3B intermediate ckpts =~ —— 6.7B intermediate ckpts —— 13B intermediate ckpts —— 30B intermediate ckpts

Nucleus Sampling

E W N RN

Model Size

100 \J
50 ) Sy ) ) - \“ N
FL¢

DPs (log scale)
Ps —Pi Ps Ps + pi Pi Pr—Ps

PPL

PPL

Downward trend!



Similar trend with GPT-NEO

- ps—pr - ps - p W pPt—pPs
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Distribution shift happens systematically!



What are the generated sequences like?

Dist. Greedy Search Nucleus Sampling
Fortunately, the day wasn’t all ... Fortunately, the day wasn’t all ...

Ps—p; that great. The sun was setting and the sun was falling. that good when the computer said doom and gloom about
I went to bed and woke my husband, who was asleepin me. Sure enough, because of our stubborn attempt at
his bed, to find that I was still asleep in the middle of the terrorizing him via cyberbackup (which relied heavily
night with him. He was still awake when we on computer traffic management (VCMD) to ensure my

identity), I was able fix my old

The generations are grammatically correct, fluent,
but contains hallucinations.

When p_s > p_t, the next tokens are grammatically
correct but not correct in commonsense.



What are the generated sequences like?

Dist.

Greedy Search

Nucleus Sampling

D1 —Ds

bad news. The U.N.’s Intergovernmental Panel on Climate
Change released a landmark study showing that we have
12 years to limit climate catastrophe. And a group of
young activists filed a landmark climate lawsuit in federal
district court, demanding that the government take

bad for Iowa fans. Tight end C. J. Fiedorowicz decided,
for what has to be the millionth time now, to use Twitter
as his own personal slogan board, and this time he decided
to riff off the famous Bugs Bunny

Amazing generation quality when decoding with
p_l-p_s, better than simply generate with p_l.



PPL of generated sequences vs. Validation PPL
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It largely aligns with validation perplexity
except edge cases like p_s - p_1



In-context Learning



ICL accuracy vs. FLOPs/Validation PPL
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e ICL: 2-shot over 74 BigBench Tasks
e Accuracy aligns with Validation PPL regardless of model sizes



Emergent tasks are continuous on trajectories.

Linearity Tasks Breakthroughness Tasks
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Conclusion

e When alarge/small model achieve the same perplexity, their

behavior/predictions are very similar, if not identical.
o  Perplexity of next token prediction of different trends
o  Perplexity of generated sequences
o In-contextlearning

e It's not the model size, or training flops that determine model behaviors, but
the perplexity, and scaling up is a way to effectively reduce perplexity



Future Work

More model behaviors on trajectories
e More fine-grained analysis on specific tasks? COT?

Double Descent in Pre-training

e Why does it happen and does it have to happen?

Initialization for larger models

e Given two models of different sizes have the same perplexity, can we learn how to
map the parameters of a small model to a large model for training efficiency?

Suboptimal distribution

e If we know the distribution of a small model is suboptimal, can we incorporate the
information when training a large model to enhance training efficiency?



