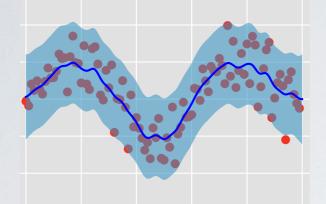
BRIDGING THE GAP BETWEEN DEEP LEARNING THEORY AND PRACTICE

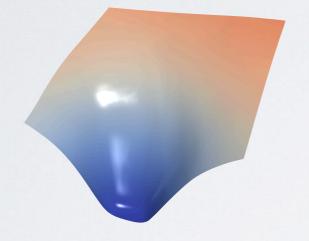
Micah Goldblum

NEW YORK UNIVERSITY

Bayesian ML

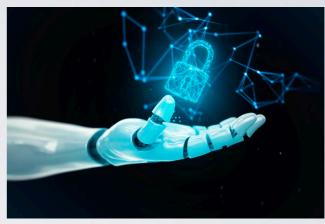


Generalization Theory



Algorithmic Fairness

Al Security and Privacy

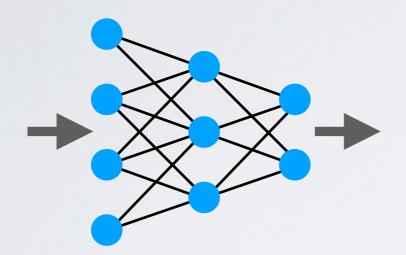


Generative Modeling

ML for Tabular Data

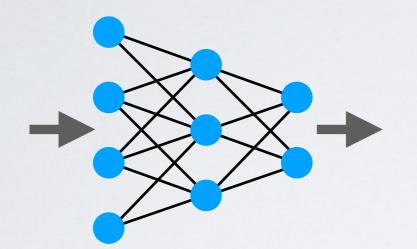
	dane 💿 🔹 🚼	9+ (?+ *					Samplexist - Sa					TeachUc	omp Teacher 🛛 🖽	
File					Help , P Tell me what y	ou want to do								hare Comme
û	¥ Cut Eth Copy →			🕅 - 🎒 Wrap Text	General		Normal	Bad		utral Calcul	ation		AutoSum * 25	
	Format Painter	B 1 U • . • A	· ===	🗉 🔟 Merge & Cente	* - \$ - % • 🐀 4	Conditional Form Formatting * Tab	et as fe*	Explanatory	Input Lin	ked Cell Note	Ŧ			& Find & r* Select *
	Clipboard 5		6	Highment.	G Number	6		Styl	в			Inset Cells	Editing	
A1	* 1 ×	V fr Payroll Project	ions:									Insert Sheet Bows		
1	Α	В	С	D	E	F	G	H	- I	J	K		M	N
1	Payroll P	rcjections:		Wage:		\$10.00						Inseit Worksheet	Shift+F11)	
2	_	-		Withholdin	g Percentage:	0.13								
3														
4	Name:	Department:	Monday	Tuesday	Wednesday	Thursday	Friday	Total Hours	Gross Pay	Net Pay				
5	Joe	Admin	8.00			8.25		39.5		\$343.65				
6	Jill	Admin	8.00	8.00	8.00	7.75	8.00	39.75	\$397.50	\$345.83				
7	Jon	Admin	8.00	0.00	8.00	8.00	8.00	32	\$320.00	\$278.40				
8	Jeff	Admin	8.00	8.00	8.00	8.00	8.00	40	\$400.00	\$348.00				
9								151.25						
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
20		Sheet5 Week2 (+)									-			
	Week1	2000 MINE (+)											1 101 EVI -	

Flexible model



Flexible model

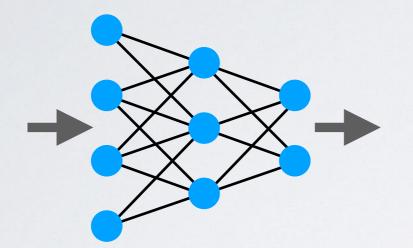
Training loss



$$L(w) = \sum_{i} ||f(\mathbf{x}_{i}; w) - y_{i}||^{2}$$

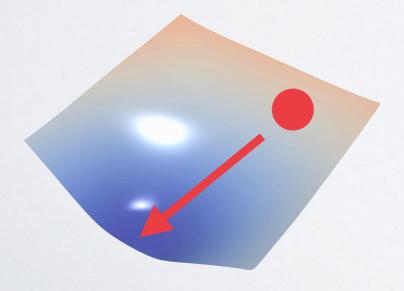
Flexible model

Training loss



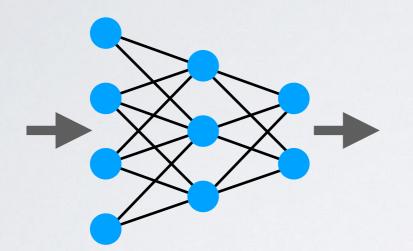
$$L(w) = \sum_{i} ||f(\mathbf{x}_i; w) - y_i||^2$$

Minimize training loss



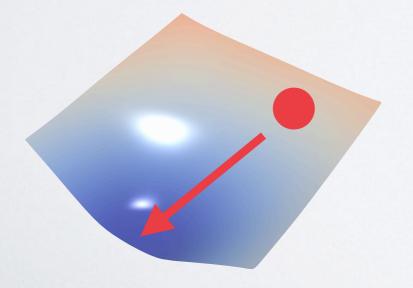
Flexible model

Training loss

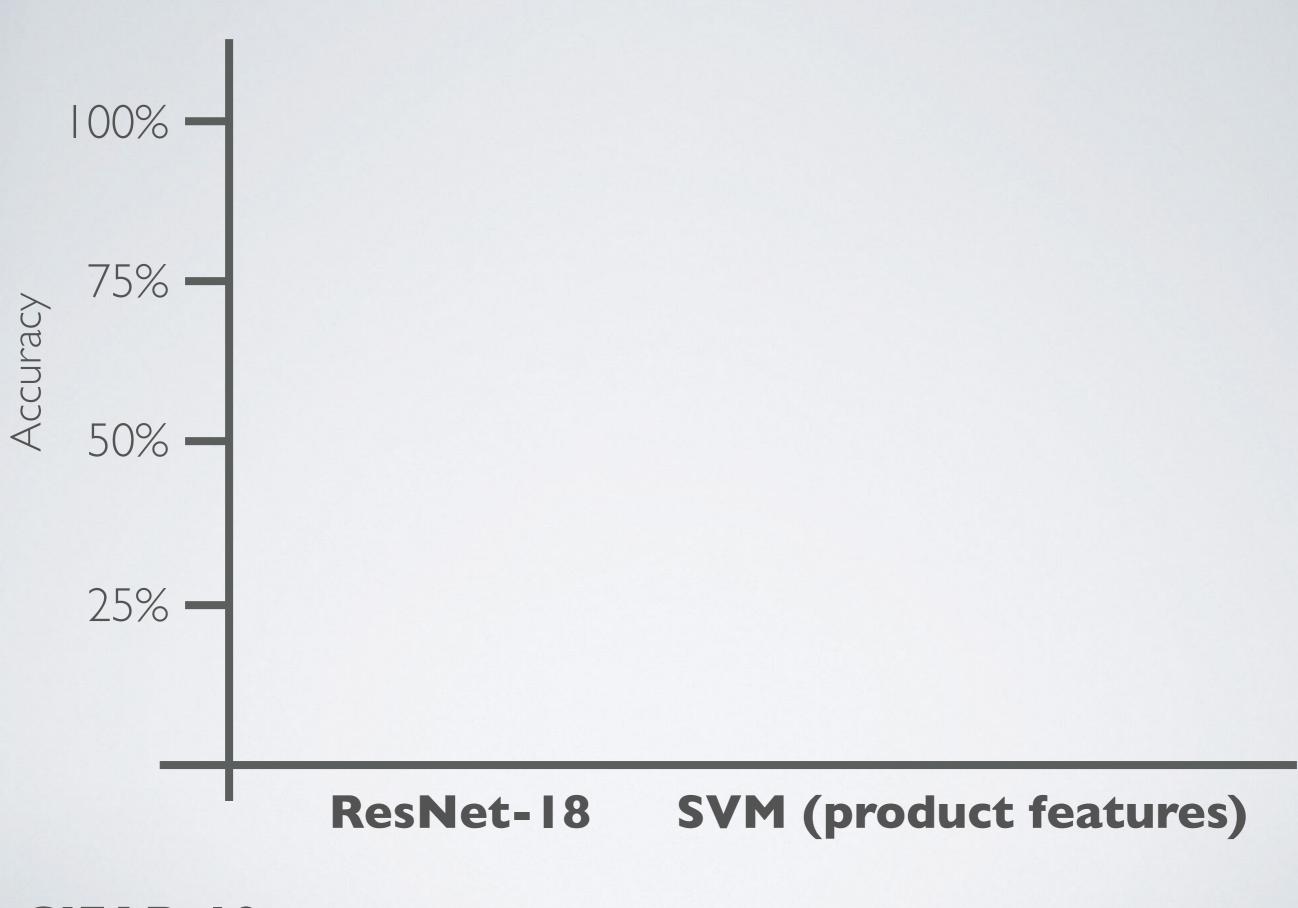


$$L(w) = \sum_{i} ||f(\mathbf{x}_i; w) - y_i||^2$$

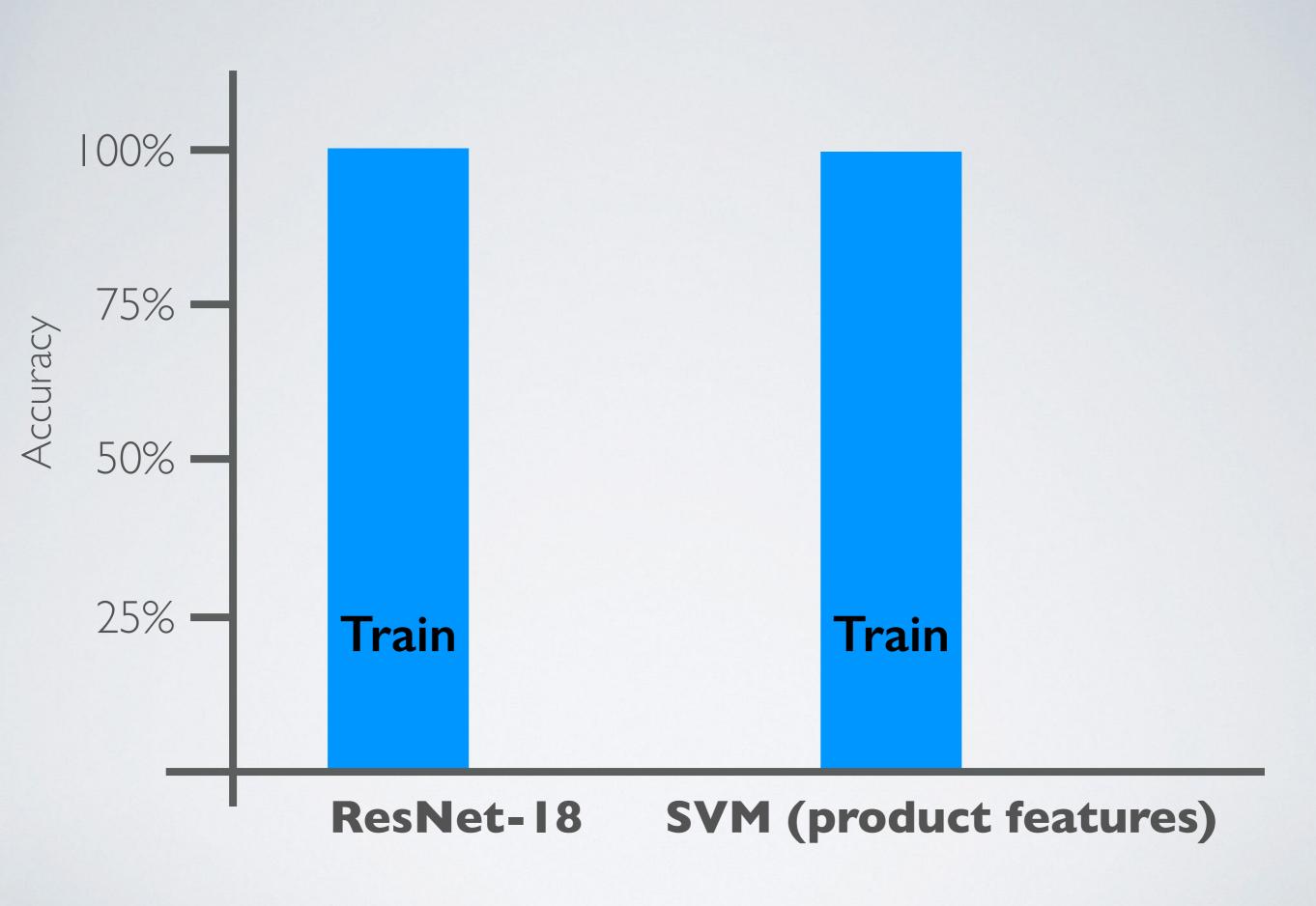
Minimize training loss



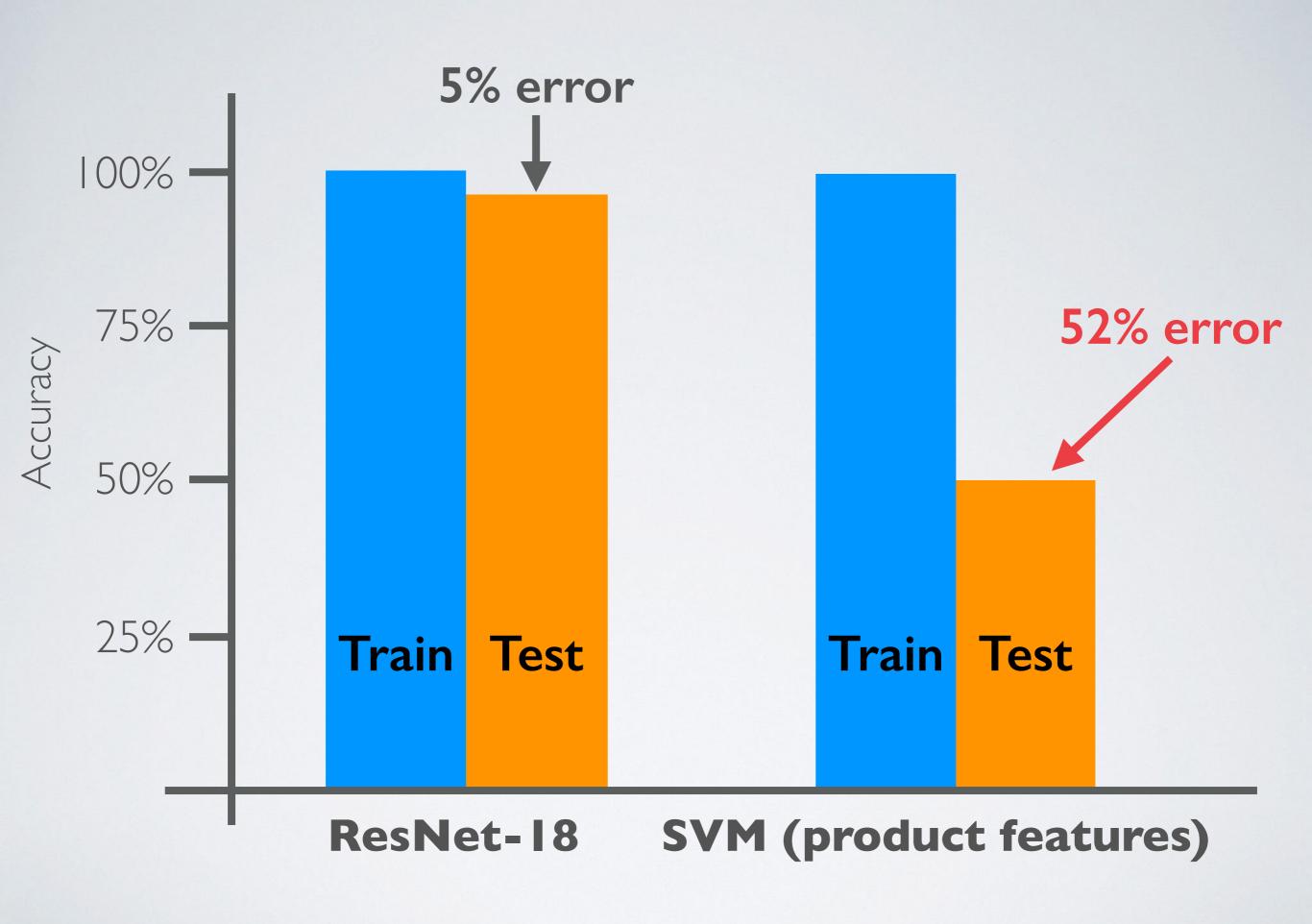
Test accuracy?



CIFAR-IO # ResNet params ≈ # SVM params



CIFAR-IO # ResNet params ≈ # SVM params



CIFAR-IO # ResNet params ≈ # SVM params

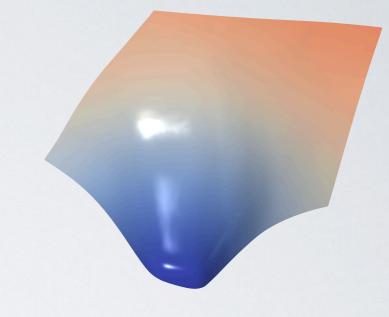
Why do neural networks work?

Why do neural networks work?

What are the properties of good minima and why do optimizers find them?

Theories that predict generalization

Observing generalization in reasoning problems



Are all neural network minima good?

Are all neural network minima good?

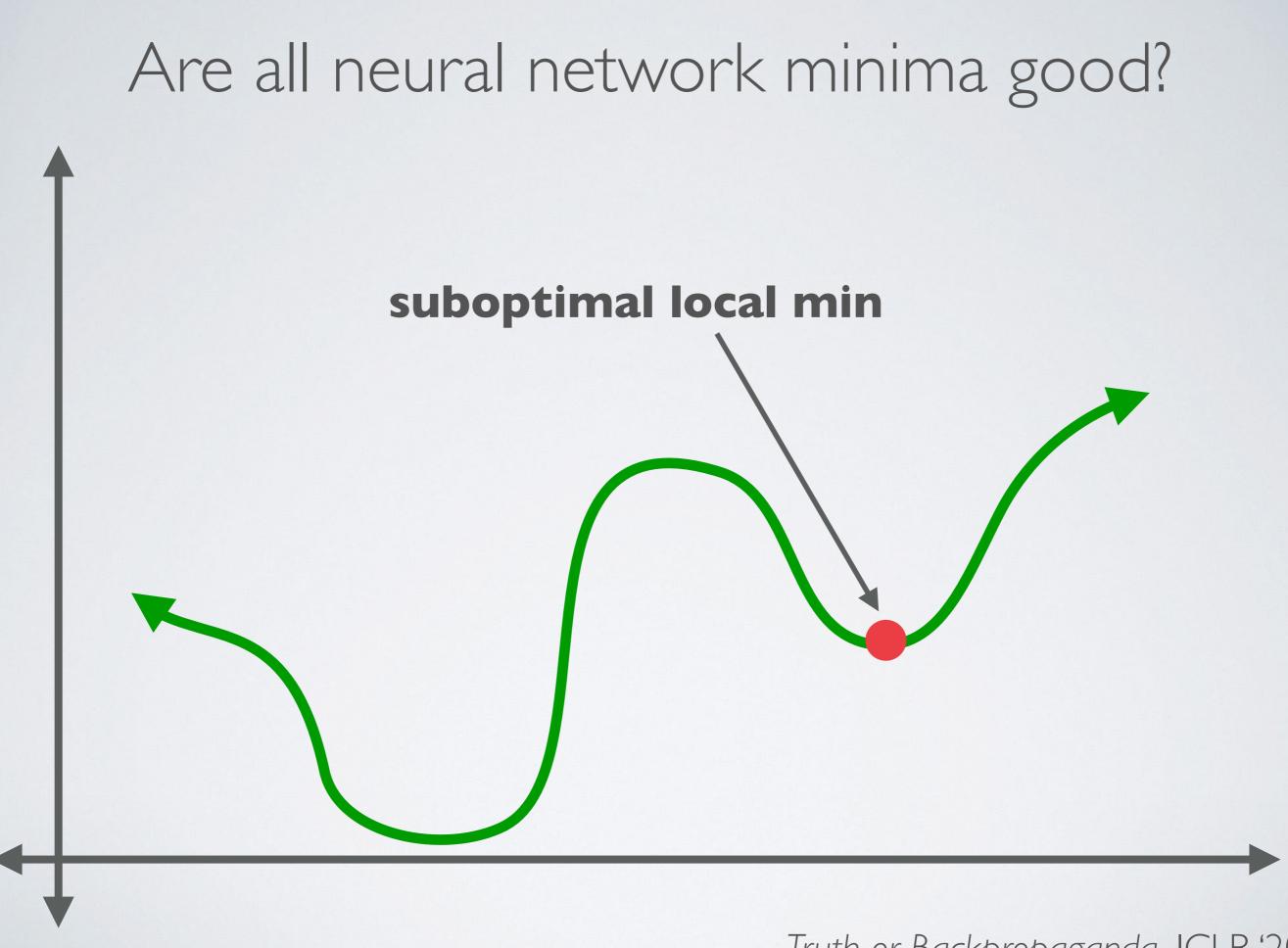
I. Suboptimal local minima

Are all neural network minima good?

I. Suboptimal local minima

Truth or Backpropaganda, ICLR '20

2. Global minima that generalize poorly



Assumptions:

Assumptions:

- Continuous loss function ${\mathscr L}$

Assumptions:

- Continuous loss function ${\mathscr L}$
- MLP with ReLUs, minimum features per layer m

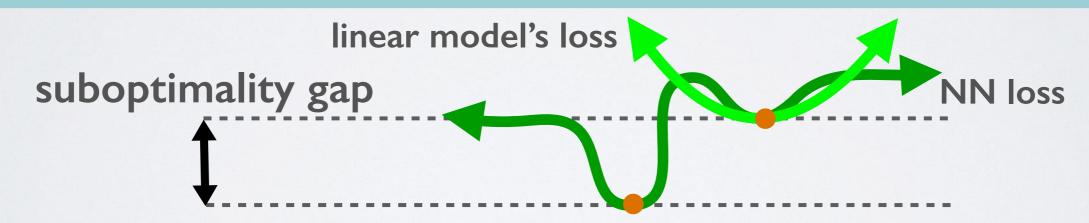
Assumptions:

- Continuous loss function ${\mathscr L}$
- MLP with ReLUs, minimum features per layer m
- Linear model with $rank(W) \leq m$

Assumptions:

- Continuous loss function ${\mathscr L}$
- MLP with ReLUs, minimum features per layer m
- Linear model with $rank(W) \leq m$

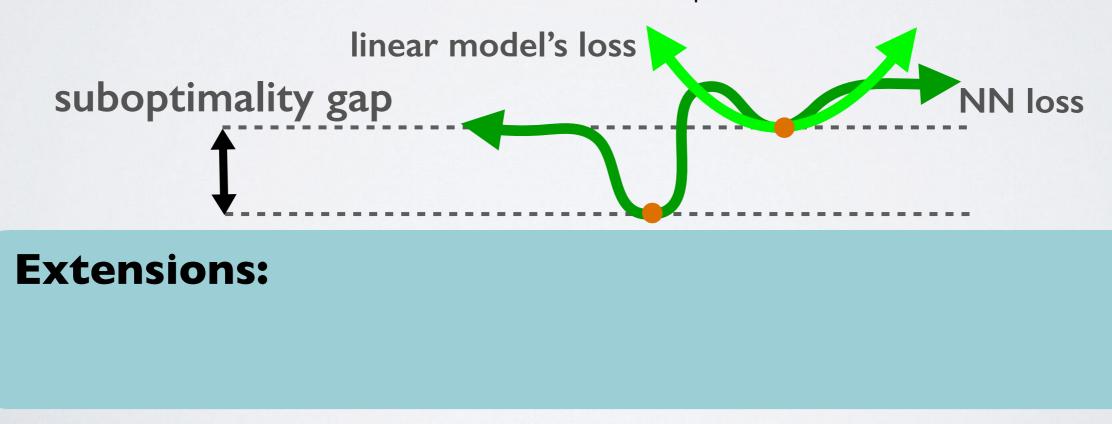
Theorem (informal): if the NN can achieve lower training loss than the linear model, it has a suboptimal local minimum.



Assumptions:

- Continuous loss function ${\mathscr L}$
- MLP with ReLUs, minimum features per layer m
- Linear model with $rank(W) \leq m$

Theorem (informal): if the NN can achieve lower training loss than the linear model, it has a suboptimal local minimum.



Assumptions:

- Continuous loss function ${\mathscr L}$
- MLP with ReLUs, minimum features per layer m
- Linear model with $rank(W) \leq m$

Theorem (informal): if the NN can achieve lower training loss than the linear model, it has a suboptimal local minimum.

Extensions:

Convolutional networks

Assumptions:

- Continuous loss function ${\mathscr L}$
- MLP with ReLUs, minimum features per layer m
- Linear model with $rank(W) \leq m$

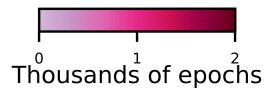
Theorem (informal): if the NN can achieve lower training loss than the linear model, it has a suboptimal local minimum.

Extensions:

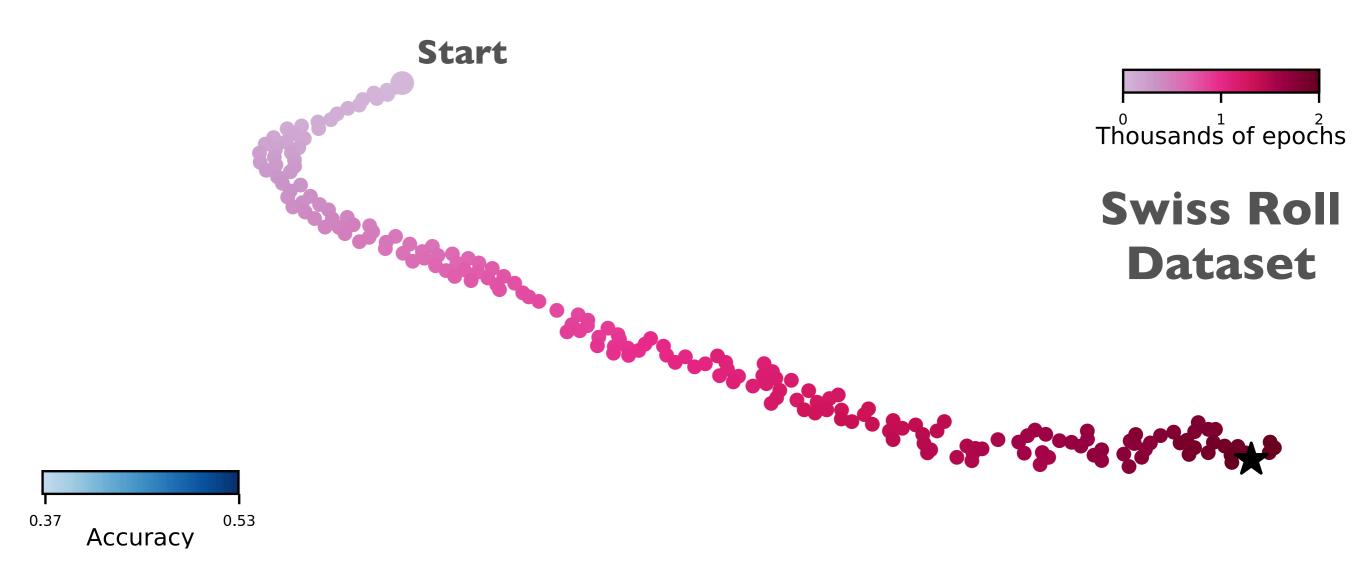
- Convolutional networks
- Replace linear models with smaller neural nets

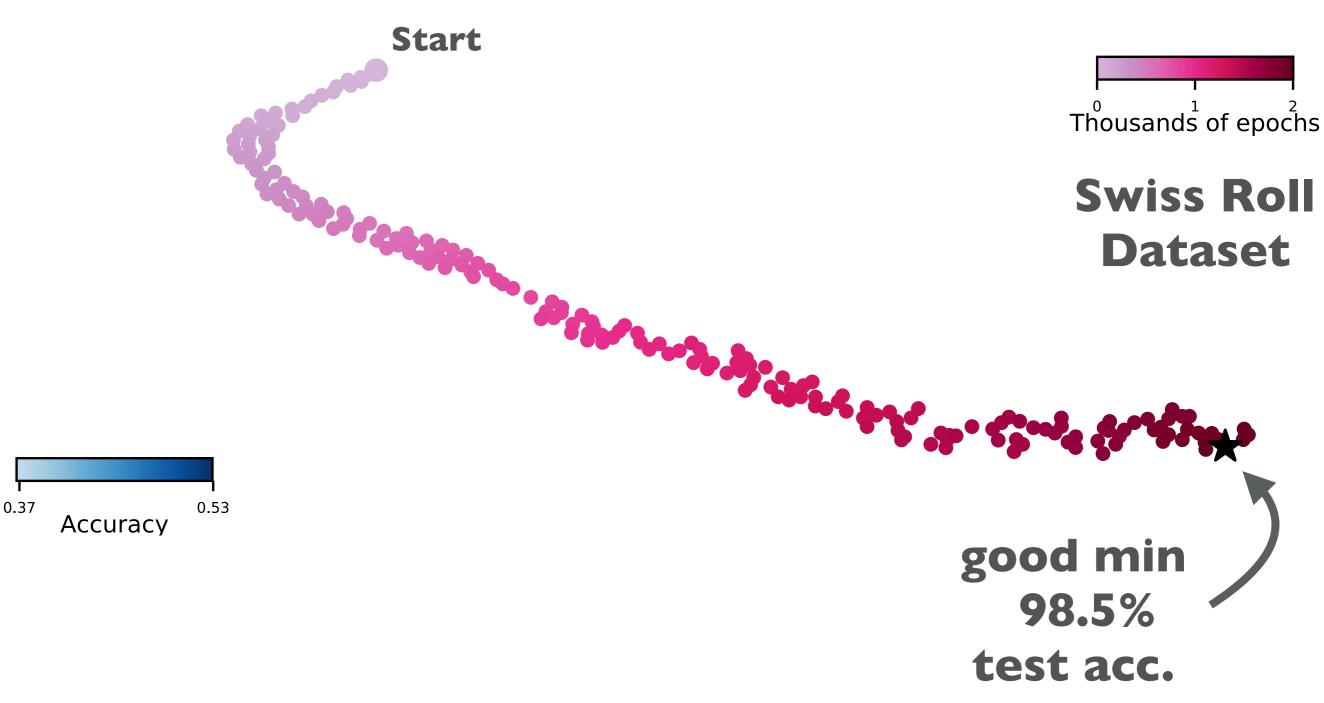
Are all global minima good? Global minima that generalize poorly

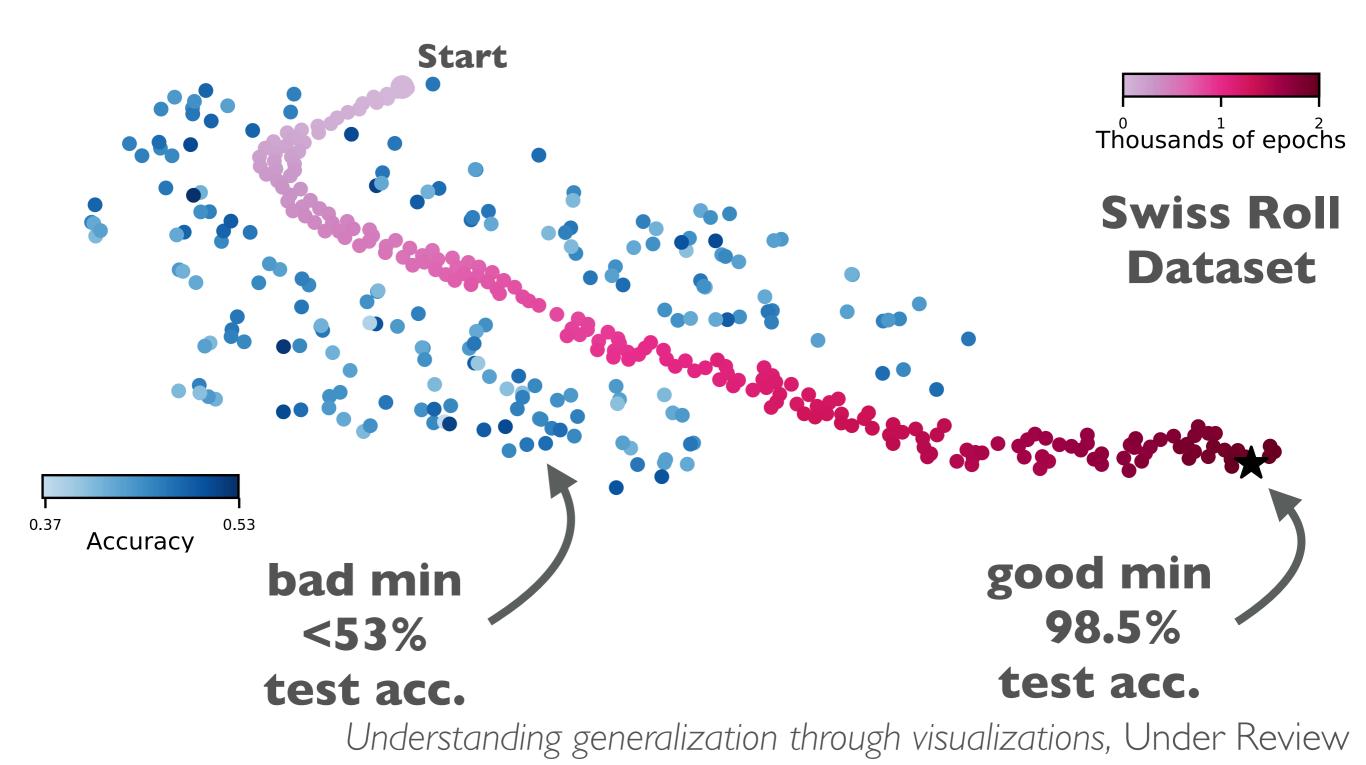
Start



Swiss Roll Dataset



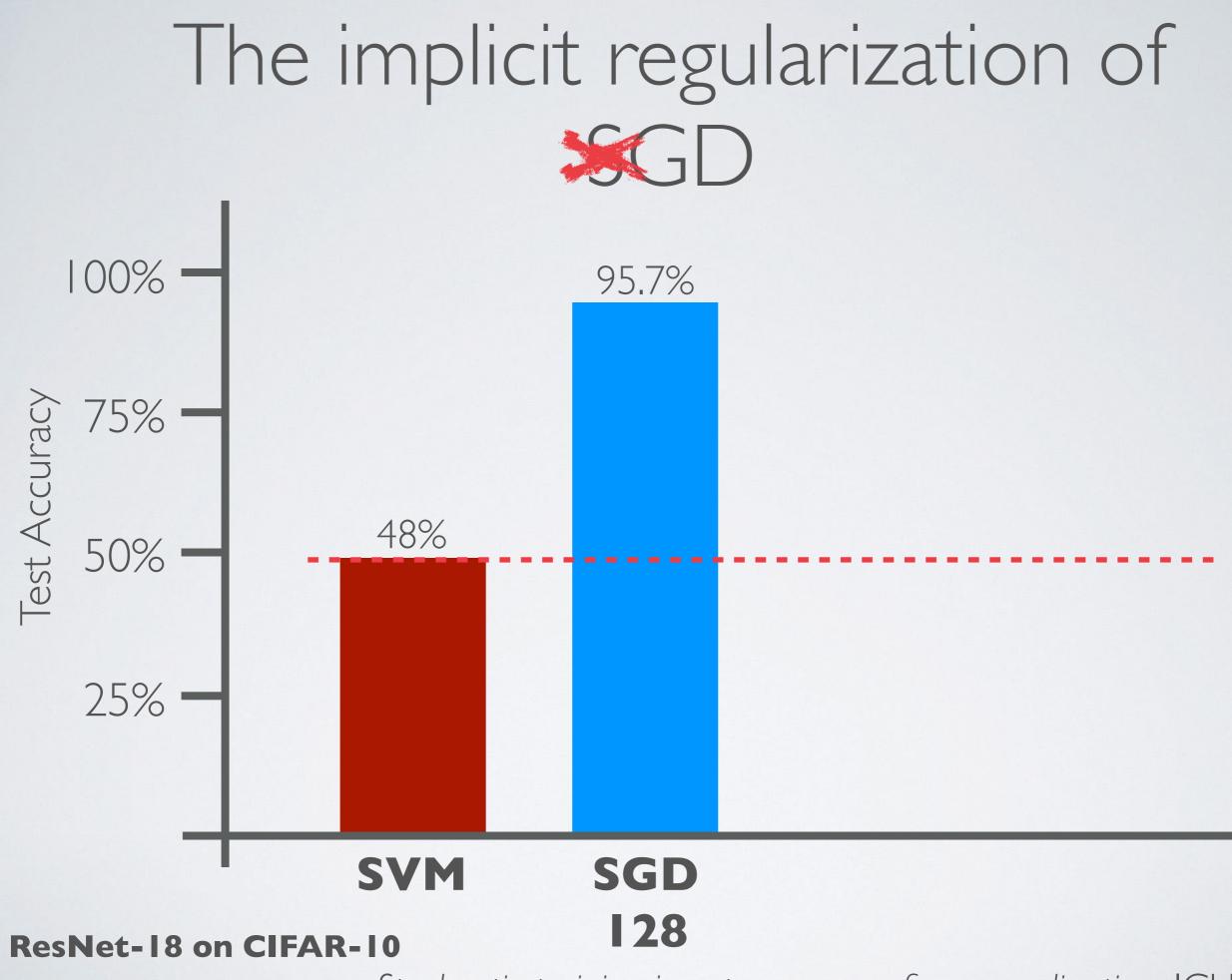




So why do we find good minima?

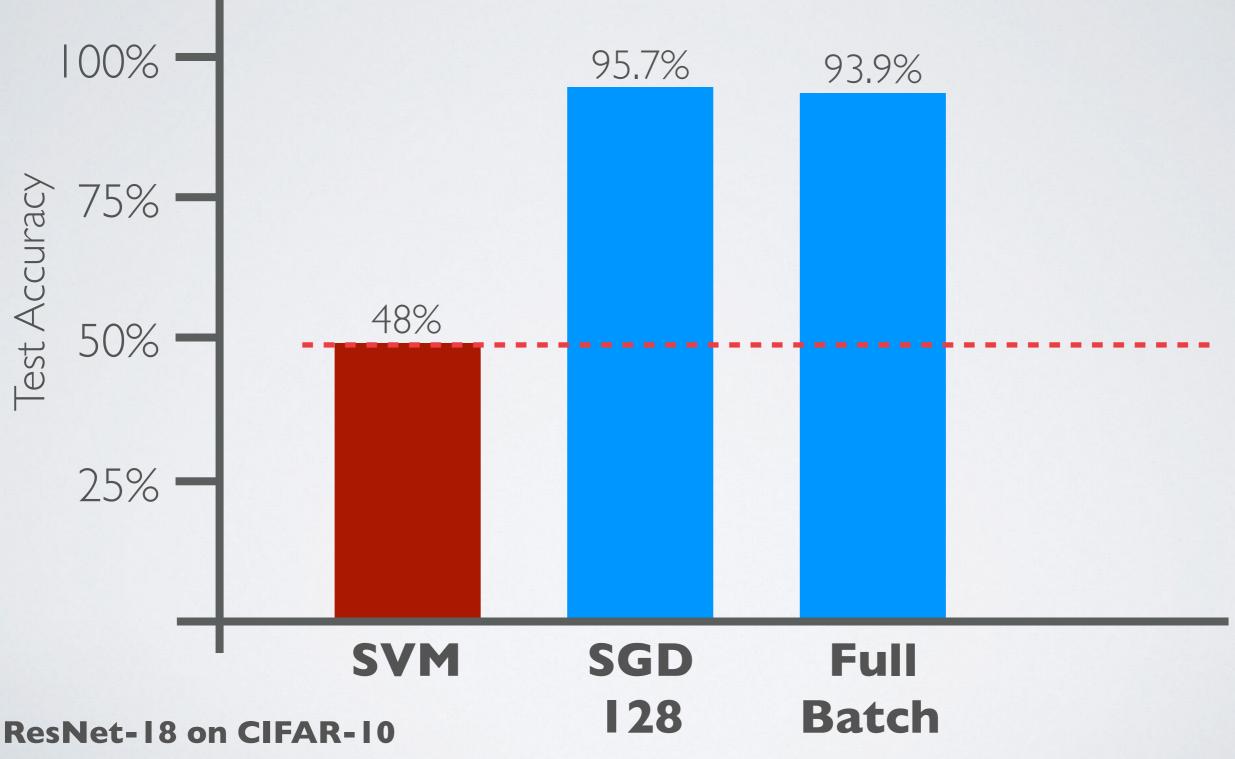
The optimizer?

Stochastic training is not necessary for generalization, ICLR '22 Gradient-based optimization is not necessary for generalization, ICLR '23



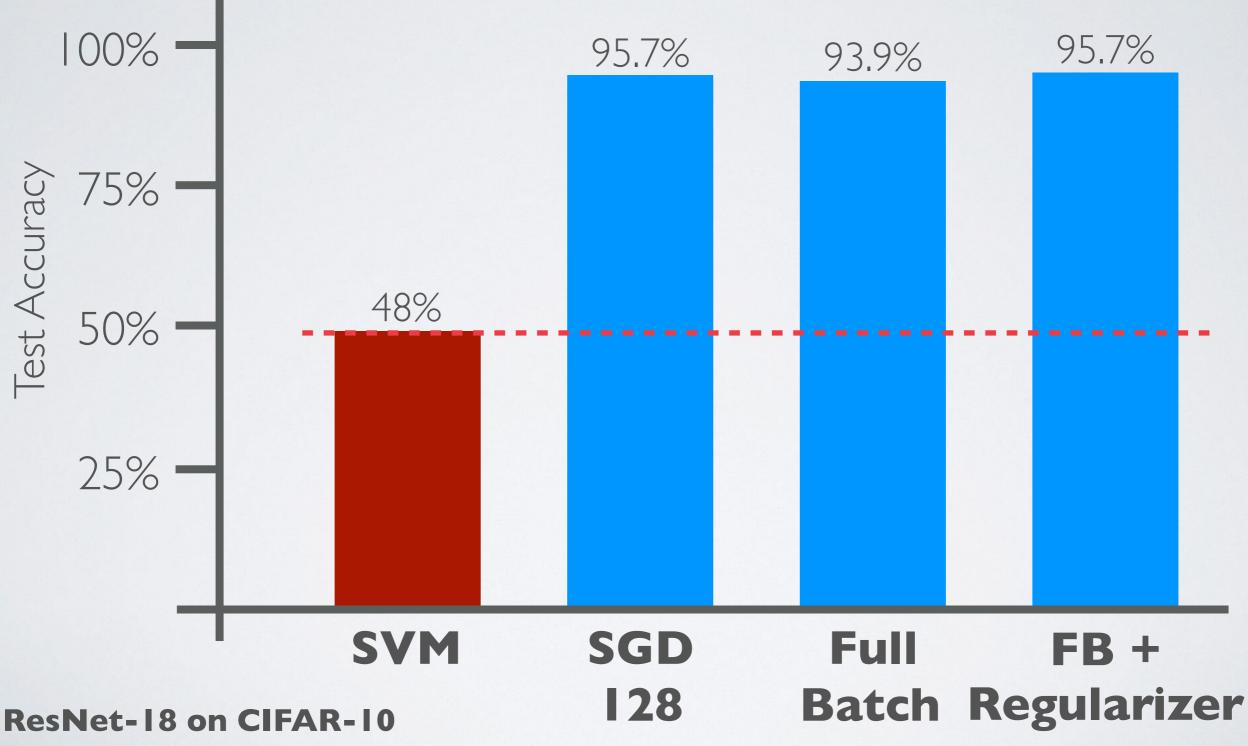
Stochastic training is not necessary for generalization, ICLR '22

The implicit regularization of



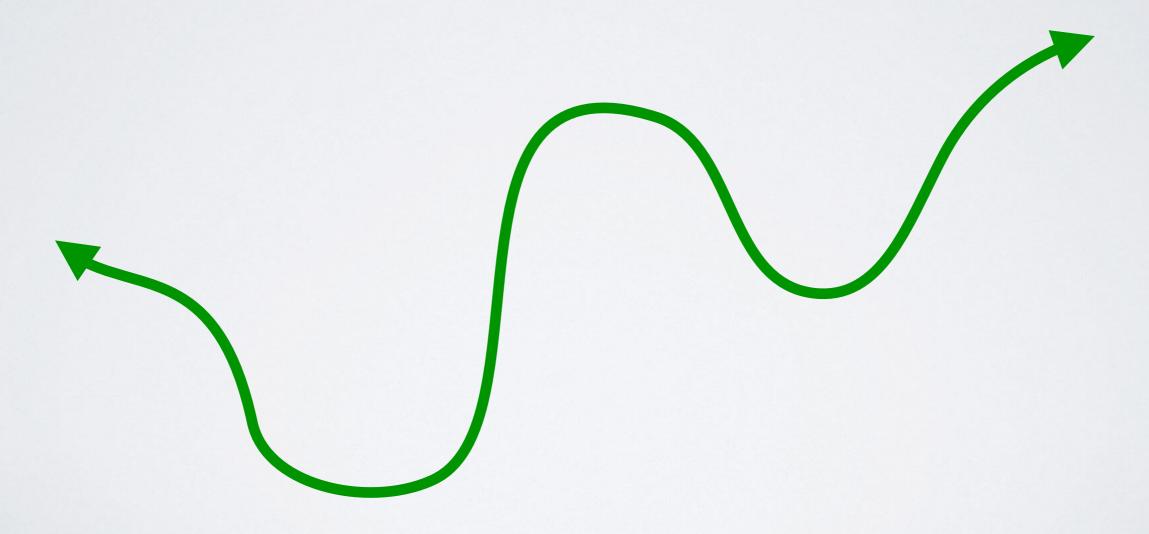
Stochastic training is not necessary for generalization, ICLR '22

The implicit regularization of



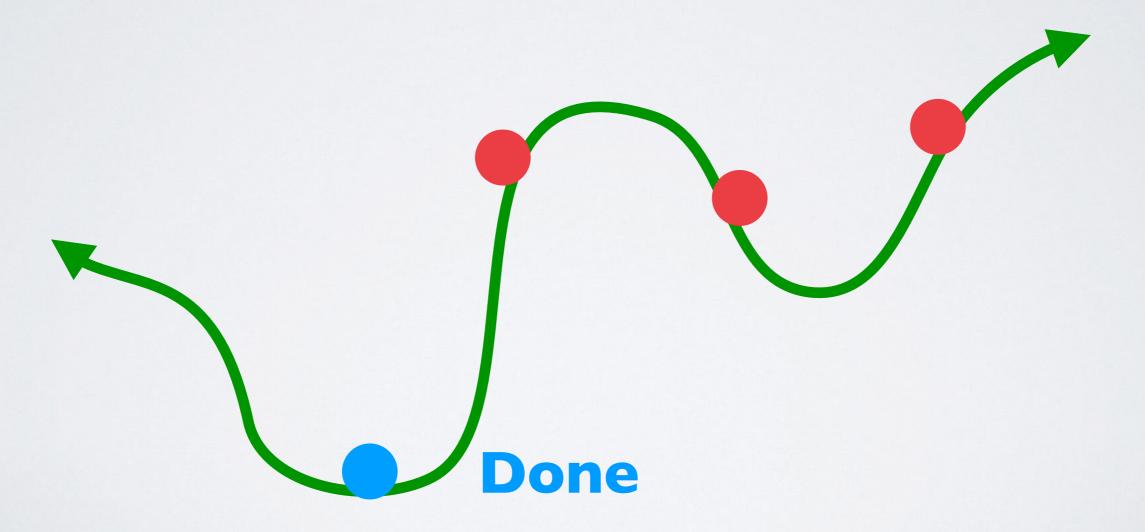
Stochastic training is not necessary for generalization, ICLR '22

Guess and Check!



Gradient-based optimization is not necessary for generalization, ICLR '23

Guess and Check!



Gradient-based optimization is not necessary for generalization, ICLR '23

The implicit regularization of

LeNet on CIFAR-10

Gradient-based optimization is not necessary for generalization, ICLR '23

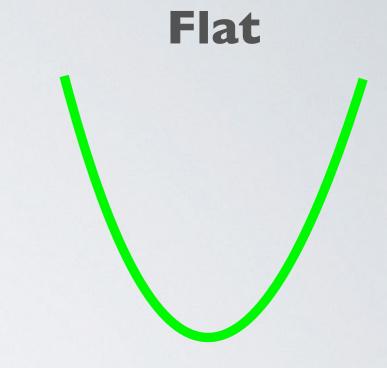
What's the difference between good and bad minima?

The sharp vs. flat dilemma Flat Sharp

The sharp vs. flat dilemma

"Good" minima are "flat"

Hochreiter & Schmidhuber, Flat Minima '97 Chaudhari et al, Entropy SGD '17 Keskar et al, On large batch training '17 Li et al, Visualizing the loss landscape '18



Sharp

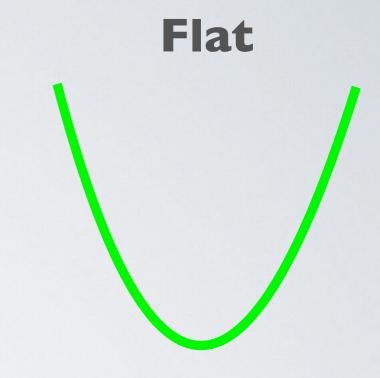
The sharp vs. flat dilemma

"Good" minima are "flat"

Hochreiter & Schmidhuber, Flat Minima '97 Chaudhari et al, Entropy SGD '17 Keskar et al, On large batch training '17 Li et al, Visualizing the loss landscape '18

"Flat" minima are "good"

Dziugaite & Roy, Computing non-vacuous '17 Izmailov et al, Averaging weights '18 Foret et al, Sharpness aware minimization '21 Geiping et al, Stochastic training is not necessary '21



Sharp

The sharp vs. flat dilemma

"Good" minima are "flat"

Hochreiter & Schmidhuber, Flat Minima '97 Chaudhari et al, Entropy SGD '17 Keskar et al, On large batch training '17 Li et al, Visualizing the loss landscape '18

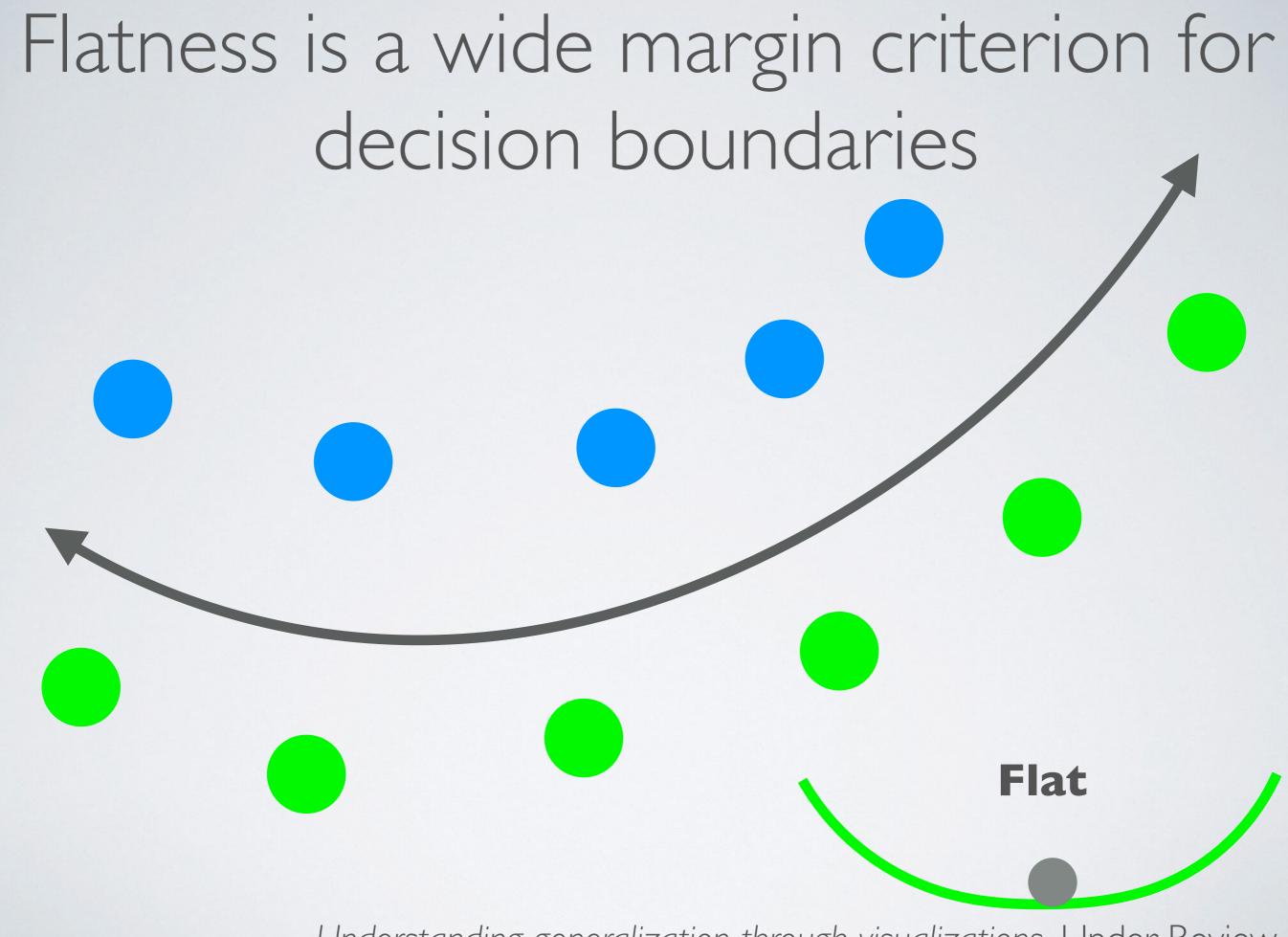
"Flat" minima are "good"

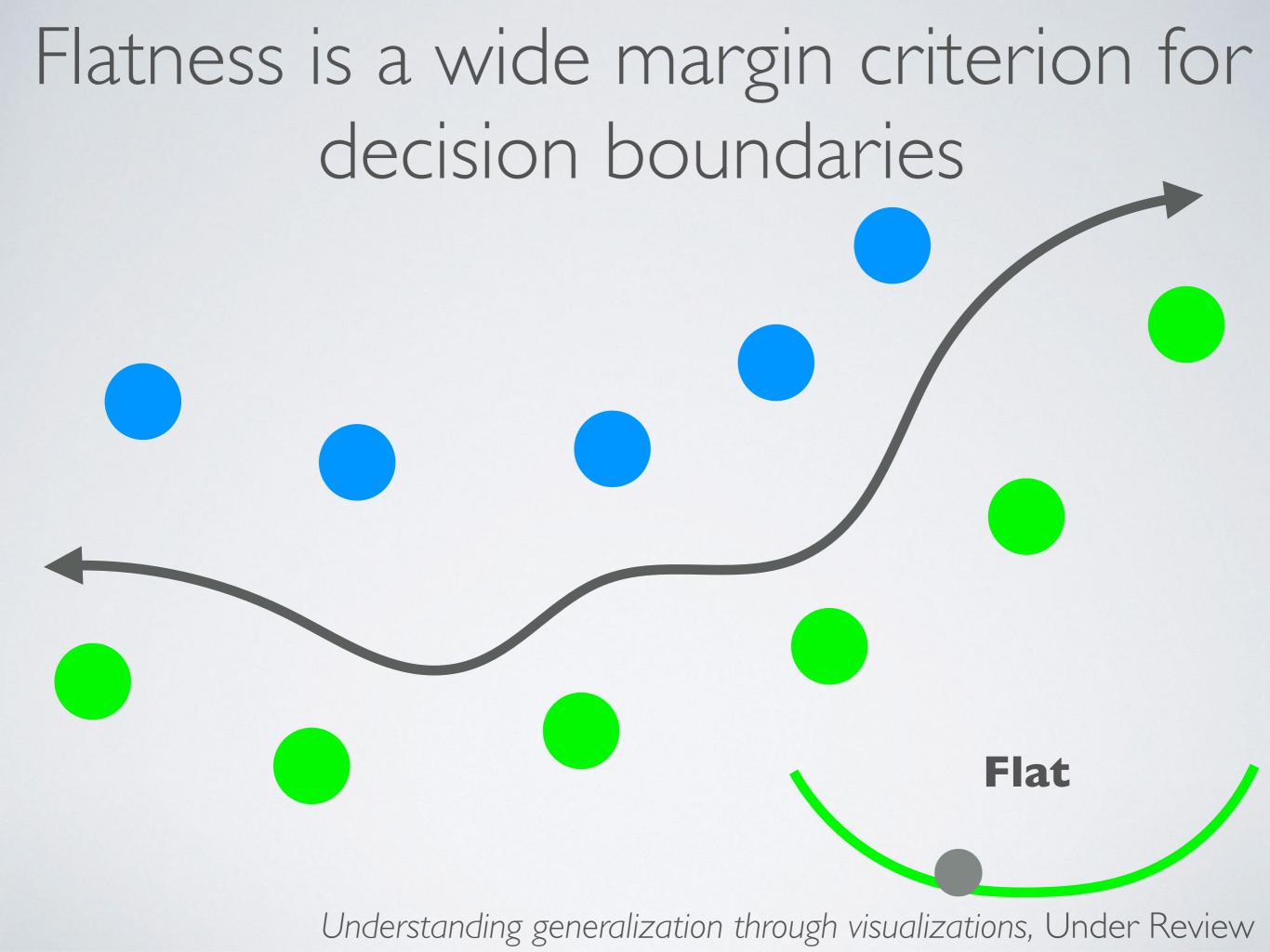
Dziugaite & Roy, Computing non-vacuous '17 Izmailov et al, Averaging weights '18 Foret et al, Sharpness aware minimization '21 Geiping et al, Stochastic training is not necessary '21

...but you have to define "sharp" carefully

Dinh, Pascanu, Bengio & Bengio, Sharp minima can generalize for deep nets '17 Flat

Sharp

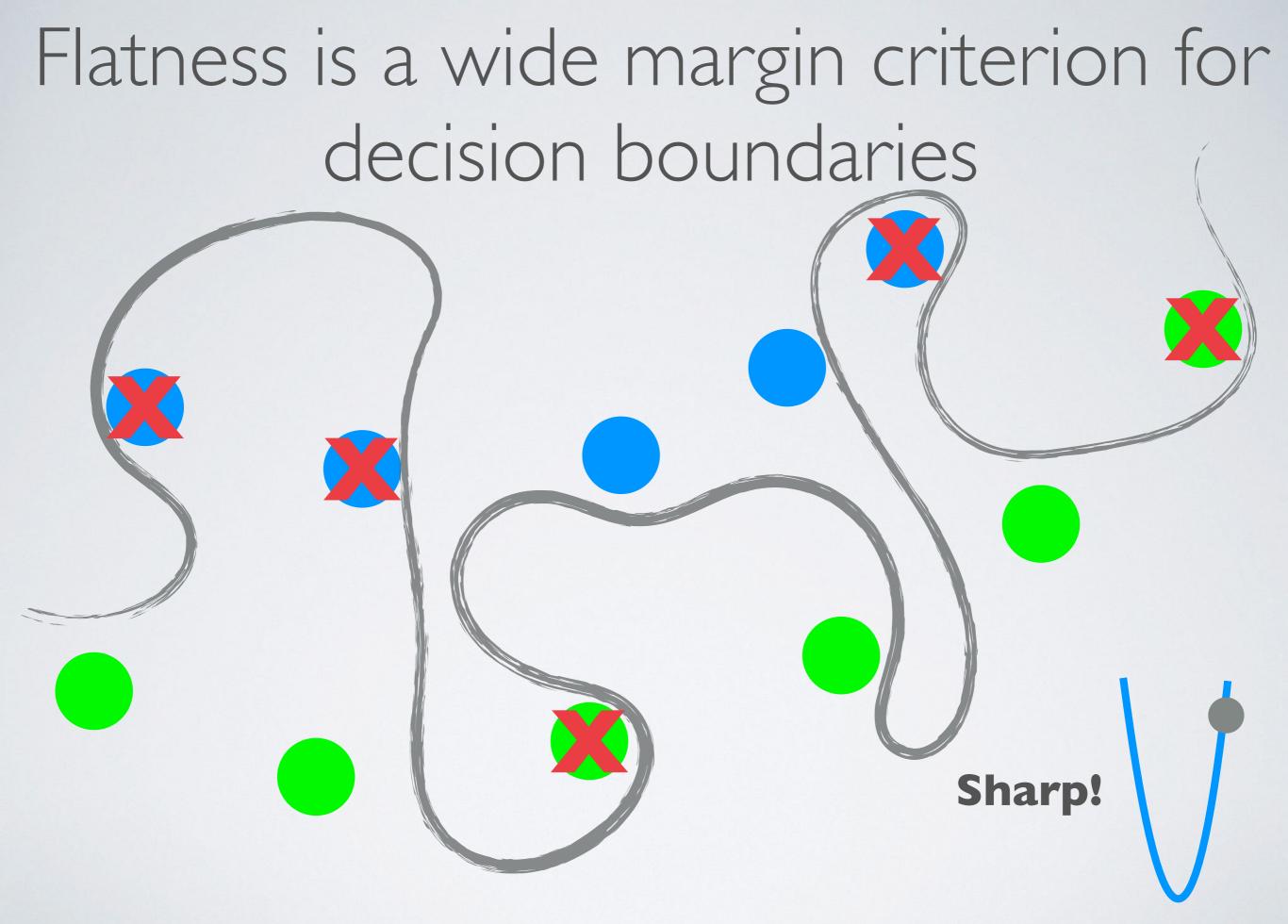


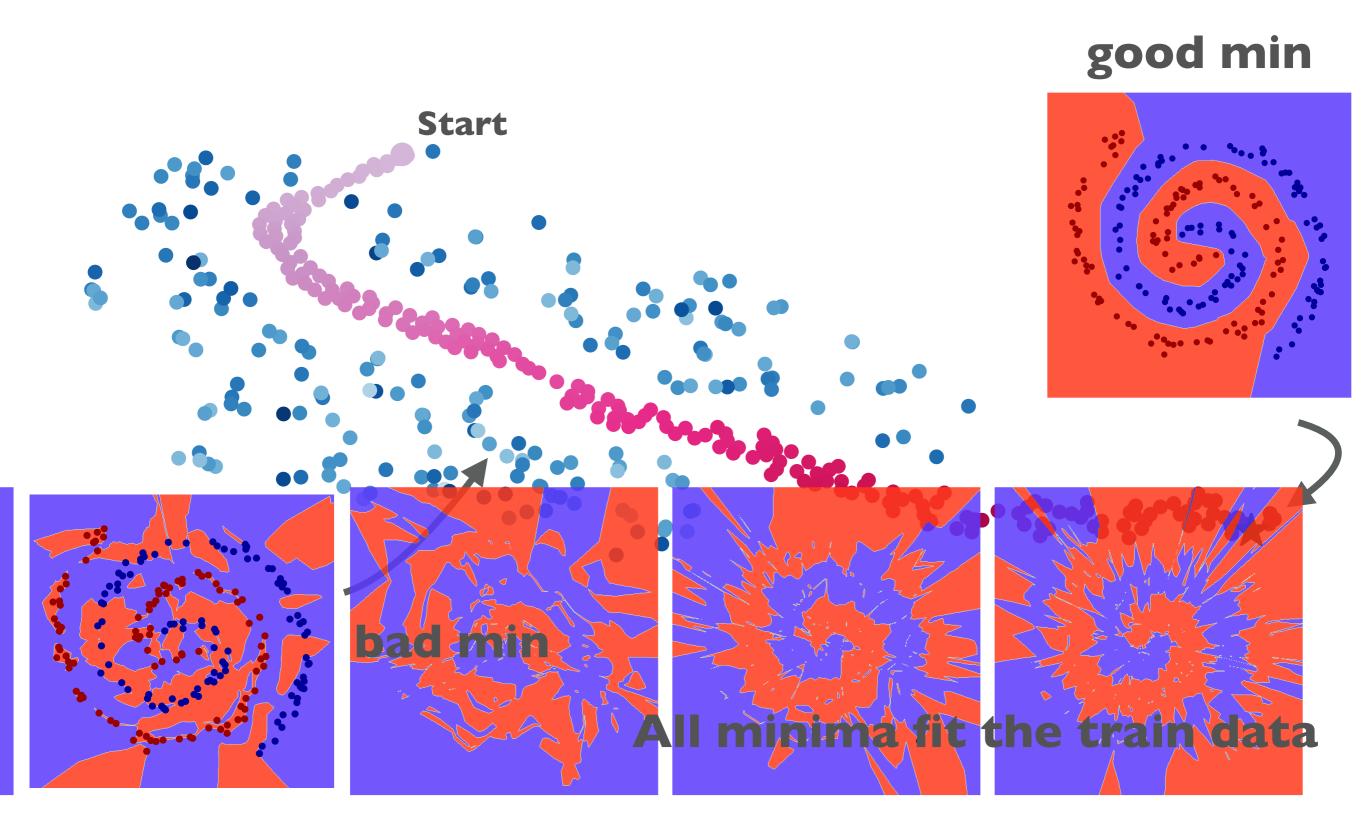


Flatness is a wide margin criterion for decision boundaries

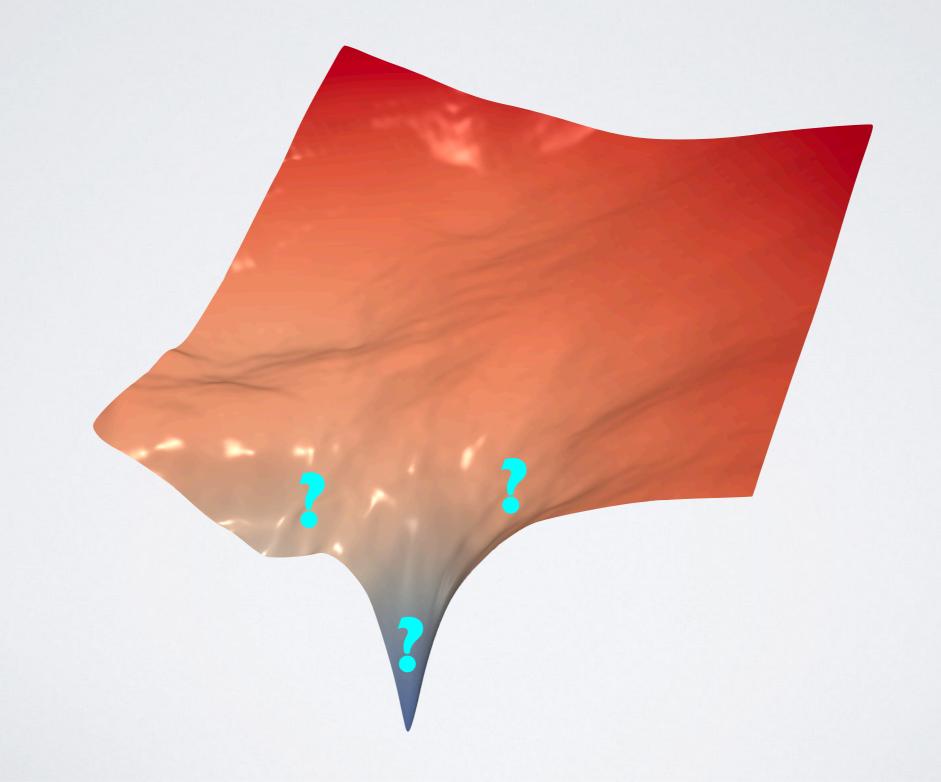
Understanding generalization through visualizations, Under Review

Sharp!





Will incompressible solutions generalize?



A good minimum

100% train 97% test

A bad minimum 100% train 28% test

Street View House Numbers

Why does generalization happen?

flat minima \rightarrow higher volume

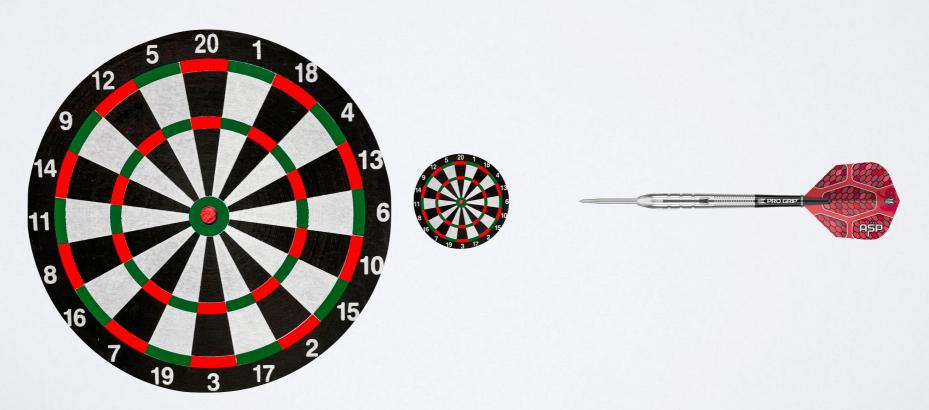
flat minima \rightarrow higher volume

dimensionality amplifies volume differences

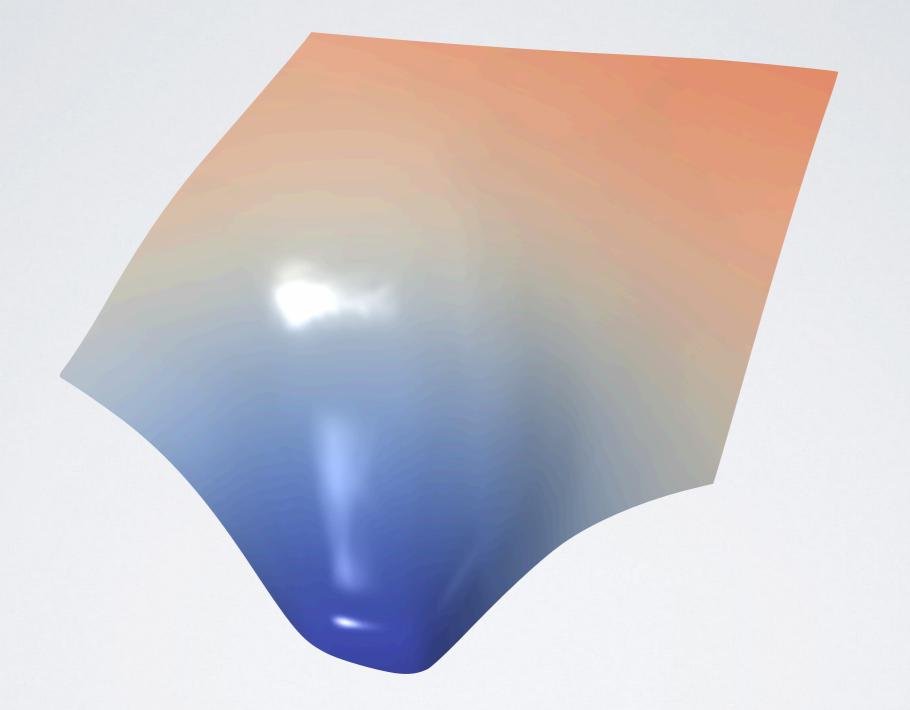
flat minima \rightarrow higher volume

dimensionality amplifies volume differences

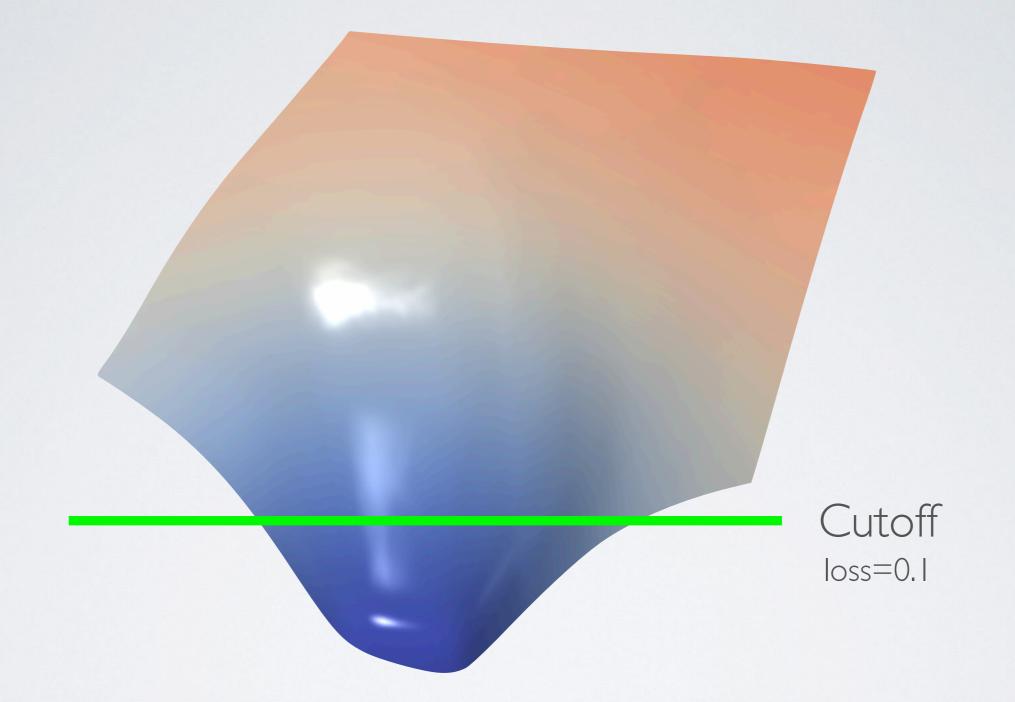
easy to find big targets



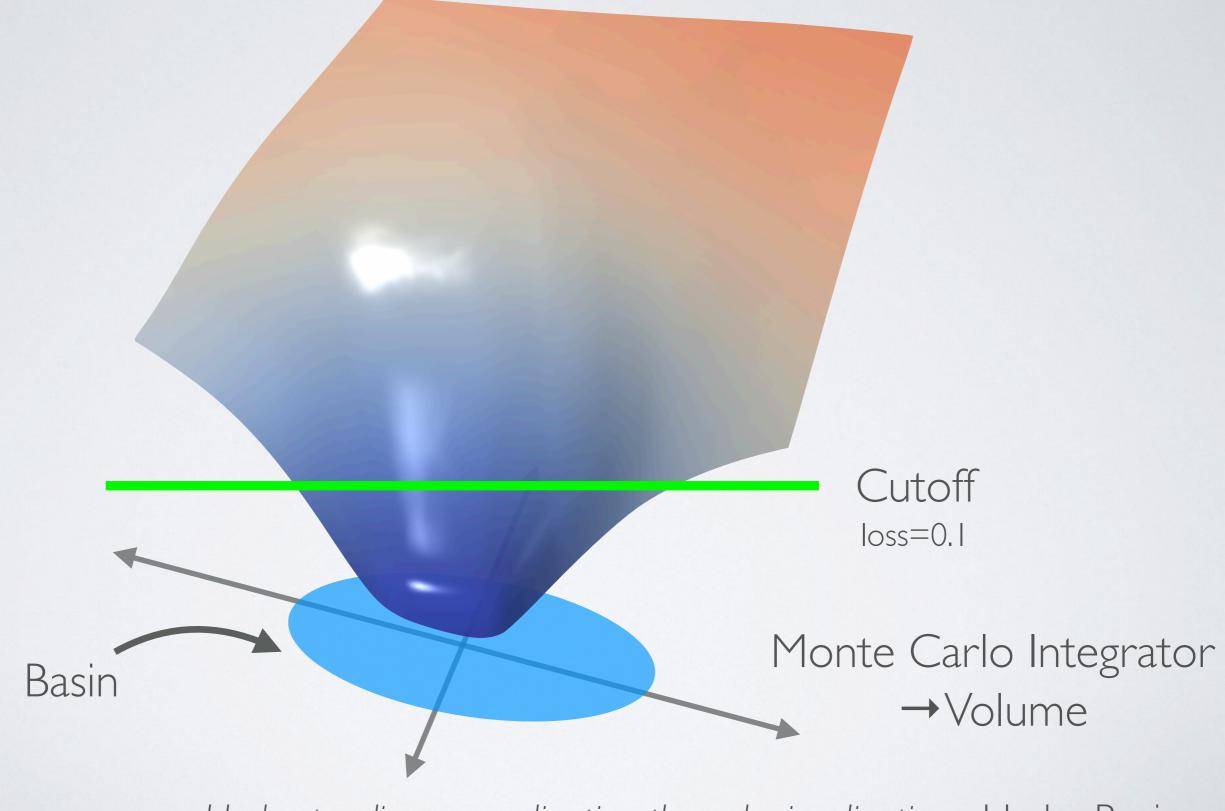
How to quantify the volume of basins around minima?



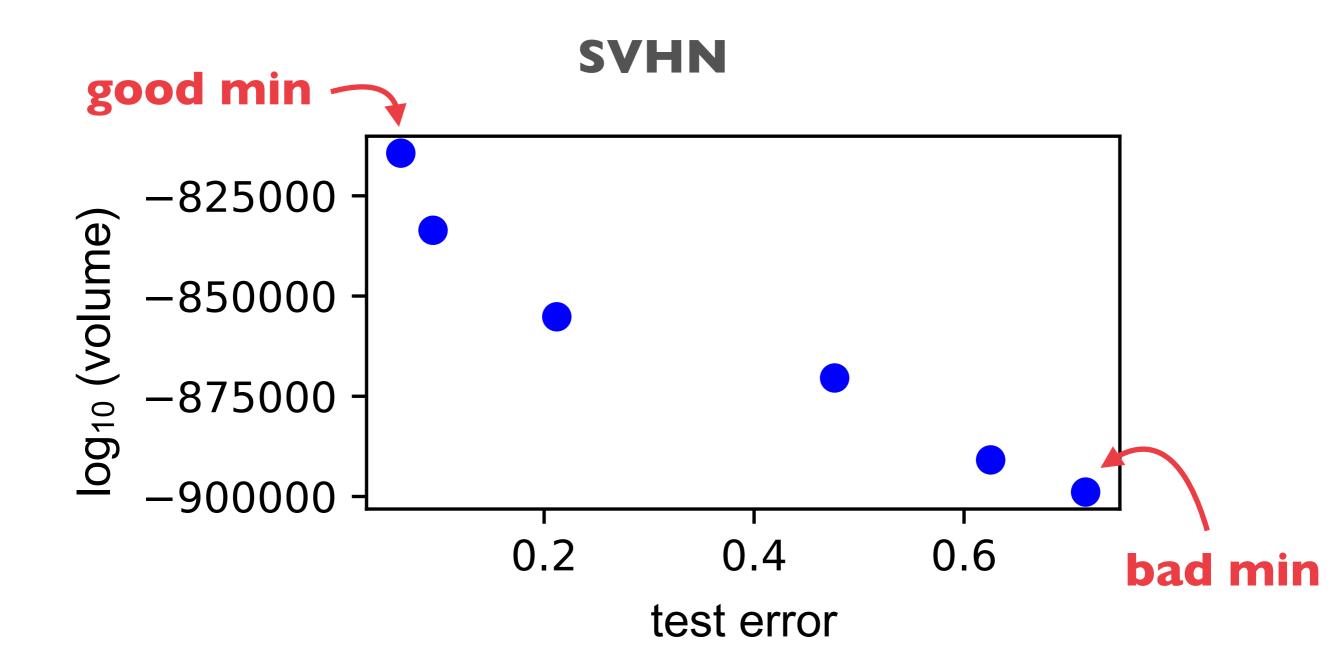
How to quantify the volume of basins around minima?

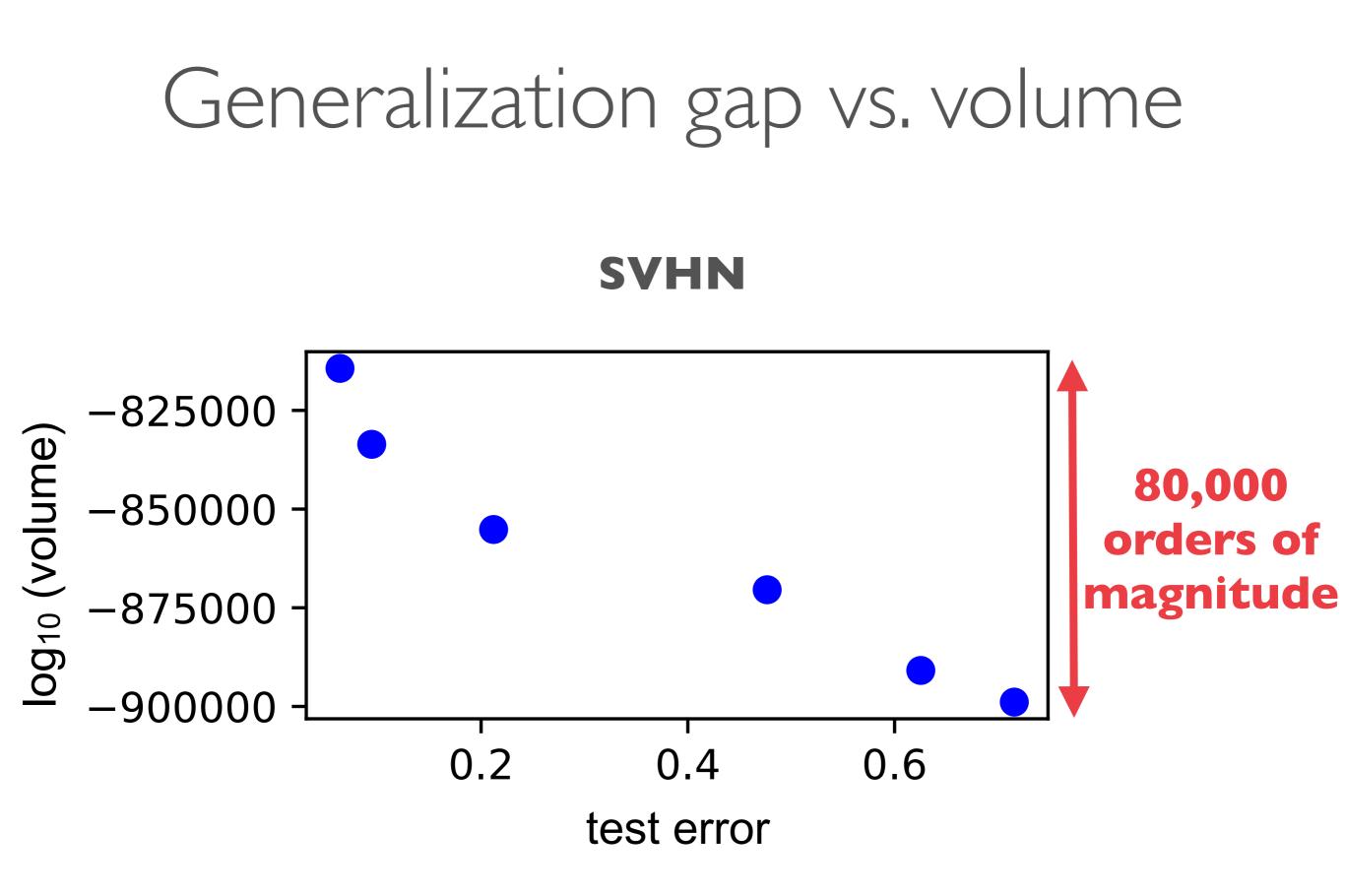


How to quantify the volume of basins around minima?



Generalization gap vs. volume





Let's Summarize!

Why do neural networks generalize?

- Are all minima good? No!
- Nothing special about the **optimizer**
- Good minima are easy to find!

Let's Summarize!

Why do neural networks generalize?

- Are all minima good? No!
- Nothing special about the **optimizer**
- Good minima are **easy to find!**

Experiments

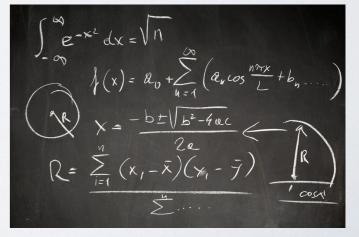
Let's Summarize!

Why do neural networks generalize?

- Are all minima good? No!
- Nothing special about the **optimizer**
- Good minima are **easy to find!**

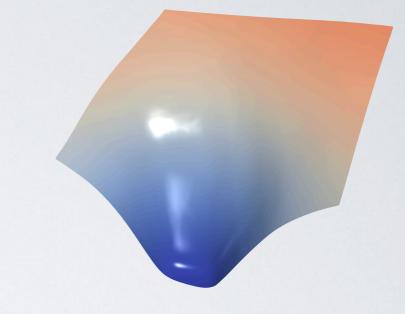
Experiments

Theory?



Why do neural networks work?

What are the properties of good minima and why do optimizers find them?



Theories that predict generalization

Observing generalization in reasoning problems

(McAllester 1998)

(McAllester 1998)

P - prior (over parameters) Q - posterior

(McAllester 1998)

P - prior (over parameters) Q - posterior

With probability at least $1 - \delta$,

(McAllester 1998)

P - prior (over parameters) Q - posterior

With probability at least $1 - \delta$,

 $\mathbb{E}_{h \sim Q} \left[R(h) \right]$ Risk (test error)

(McAllester 1998)

P - prior (over parameters) Q - posterior

With probability at least $1 - \delta$,

(McAllester 1998)

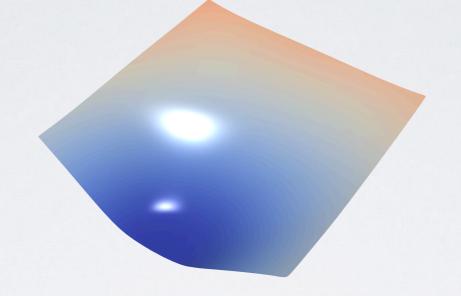
P - prior (over parameters) Q - posterior

R

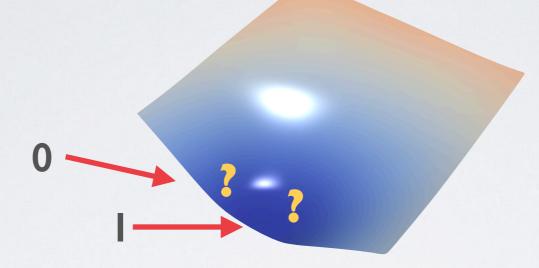
With probability at least
$$1 - \delta$$
,

$$\mathbb{E}_{h\sim Q} \left[R\left(h\right) \right] \leq \mathbb{E}_{h\sim Q} \left[\hat{R}\left(h\right) \right] + \sqrt{\frac{\mathbb{KL}(Q \parallel P) + \log(n/\delta) + 2}{2n - 1}}$$
isk (test error) Empirical Risk (train error) Complexity (train error)

flat minima → compressible posteriors

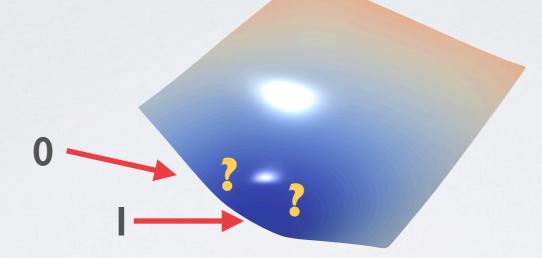


flat minima → compressible posteriors



By choosing parameters, we can encode more information!

flat minima → compressible posteriors

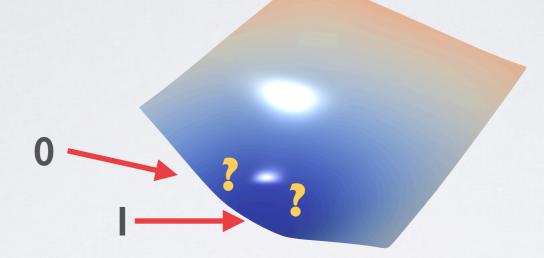


By choosing parameters, we can encode more information!

Diffuse posteriors achieve better bounds $\mathbb{KL}(Q \parallel P) = H(Q, P) - H(Q)$ fCross-Entropy Shannon Entropy

PAC-Bayes prefers flat minima

flat minima → compressible posteriors



By choosing parameters, we can encode more information!

Diffuse posteriors achieve better bounds $\mathbb{KL}(Q \parallel P) = H(Q, P) - H(Q)$ Cross-Entropy Shannon Entropy

• Frame the problem in terms of compression

- Frame the problem in terms of compression
- Reduce the number of parameters

- Frame the problem in terms of compression
- Reduce the number of parameters
- Transfer learning

- Frame the problem in terms of compression
- Reduce the number of parameters
- Transfer learning
- Quantization

- Frame the problem in terms of compression
- Reduce the number of parameters
- Transfer learning
- Quantization
- Arithmetic coding

Squeezing the juice out of PAC-Bayes

Theoretical bounds on test error, lower is better

	Err. Bound (%)	Previous SOTA (%)
MNIST	11.6	21.7
+ SVHN Transfer	9.0	16.1
FashionMNIST	32.8	46.5
+ CIFAR-10 Transfer	28.2	30.1
CIFAR-10	58.2	89.9
+ ImageNet Transfer	35.1	54.2
CIFAR-100	94.6	100
+ ImageNet Transfer	81.3	98.1
ImageNet	93.5	96.5

Squeezing the juice out of PAC-Bayes

Theoretical bounds on test error, lower is better

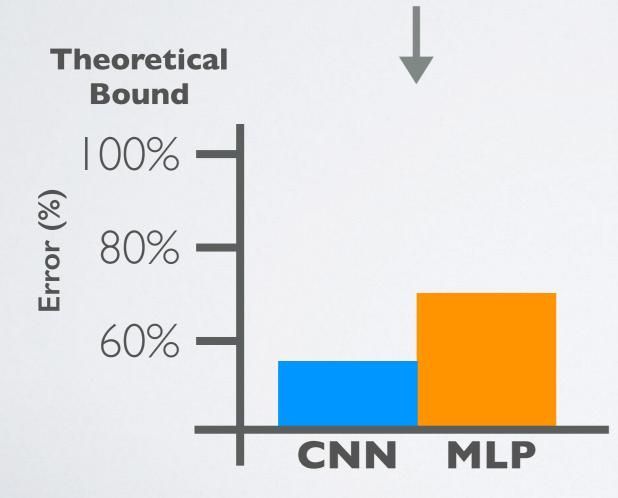
	Err. Bound (%)	Previous SOTA (%)
MNIST	11.6	21.7
+ SVHN Transfer	9.0	16.1
FashionMNIST	32.8	46.5
+ CIFAR-10 Transfer	28.2	30.1
CIFAR-10	58.2	89.9
+ ImageNet Transfer	35.1	54.2
CIFAR-100	94.6	100
+ ImageNet Transfer	81.3	98.1
ImageNet	93.5	96.5

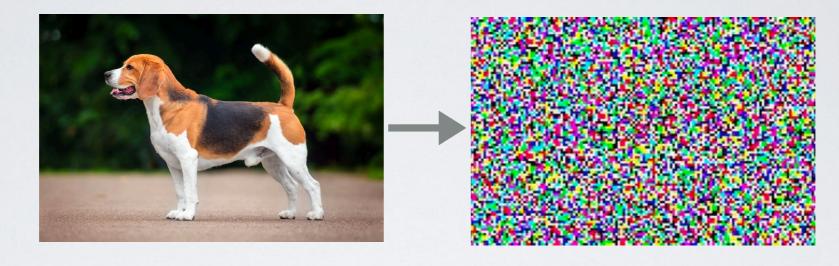
Squeezing the juice out of PAC-Bayes

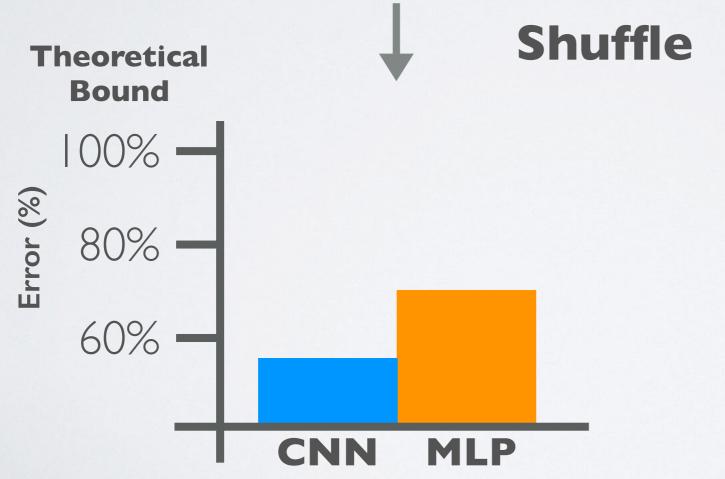
Theoretical bounds on test error, lower is better

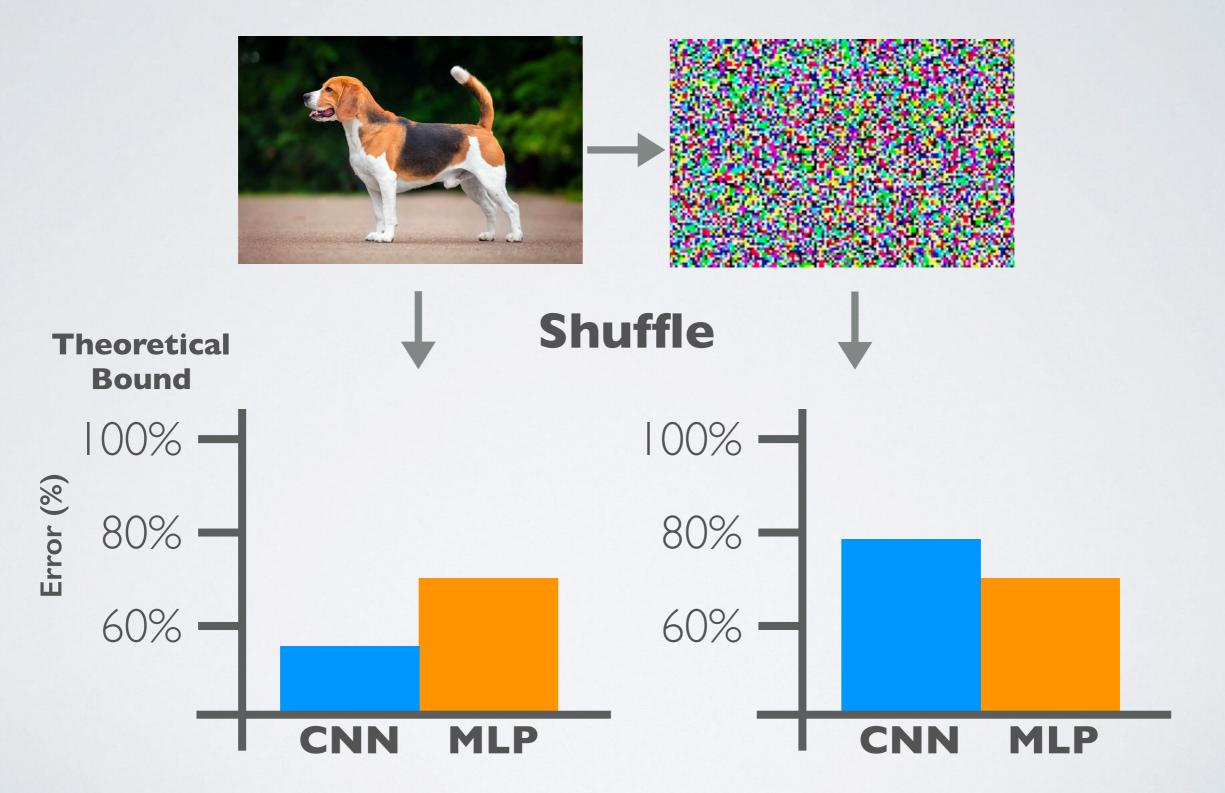
		Err. Bound (%)	Previous SOTA (%)
	MNIST	11.6	21.7
	+ SVHN Transfer	9.0	16.1
	FashionMNIST	32.8	46.5
	+ CIFAR-10 Transfer	28.2	30.1
	CIFAR-10	58.2	89.9
	+ ImageNet Transfer	35.1	54.2
-	CIFAR-100	94.6	100
	+ ImageNet Transfer	81.3	98.1
	ImageNet	93.5	96.5

Can our theory predict important phenomena in real architectures?





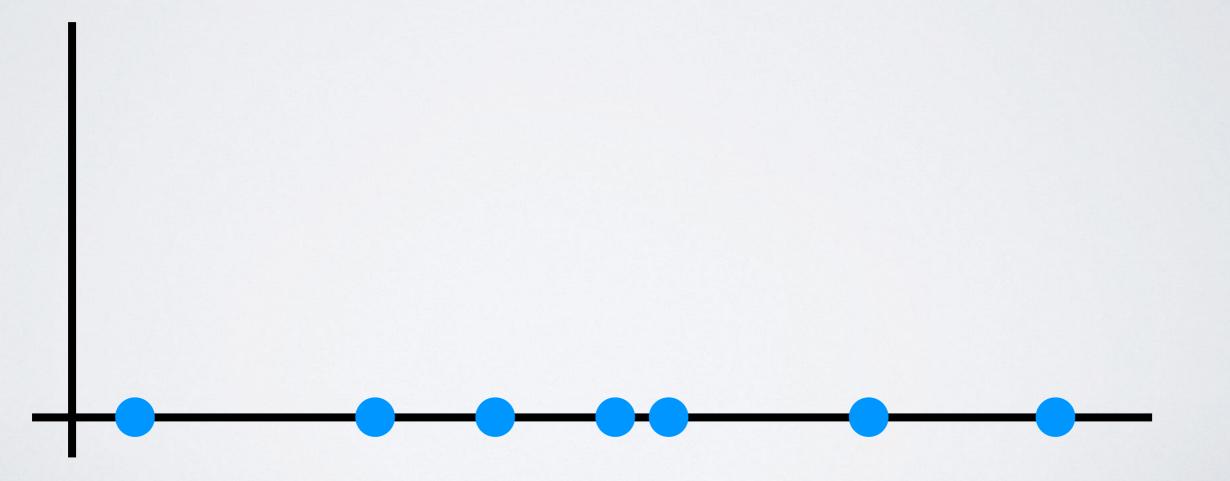




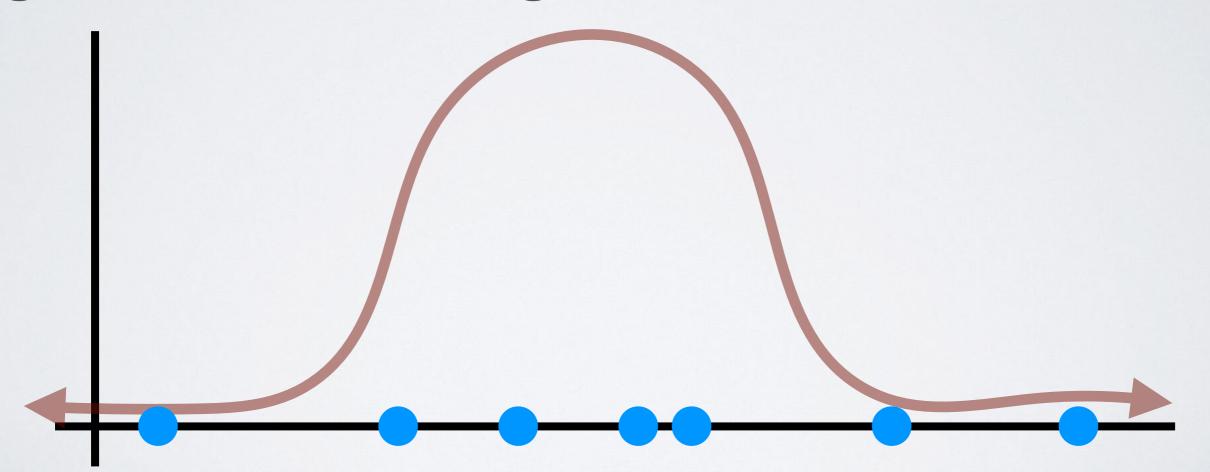
The Marginal Likelihood and Generalization

Probability that a random draw from the prior generates the training data

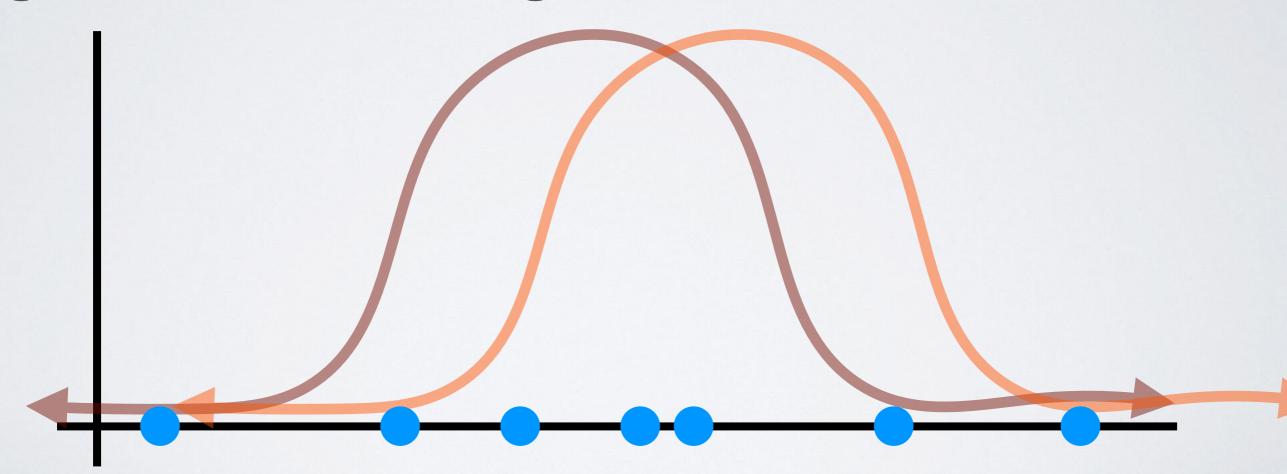
Probability that a random draw from the prior generates the training data



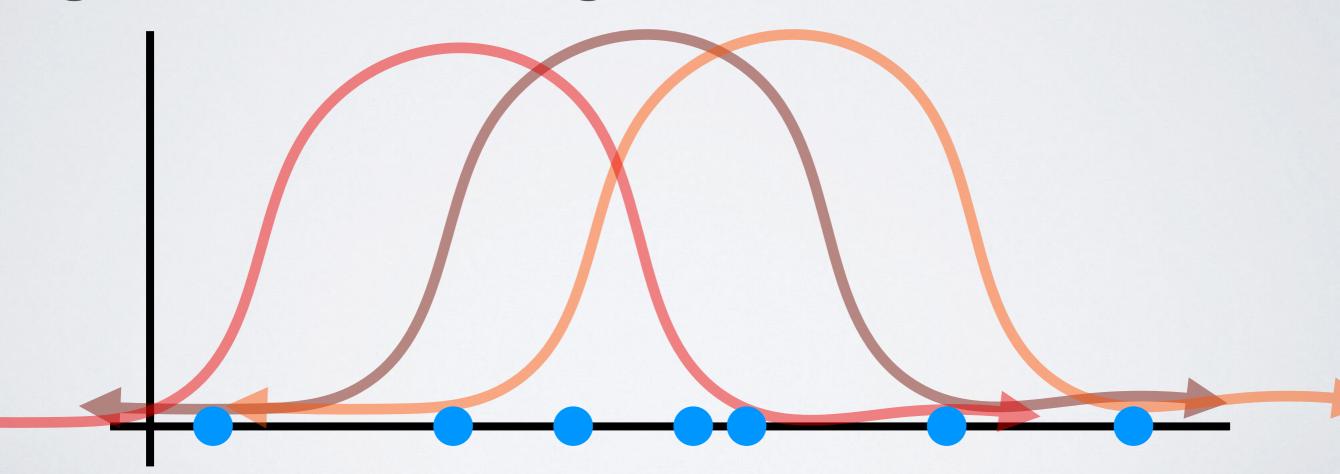
Probability that a random draw from the prior generates the training data



Probability that a random draw from the prior generates the training data



Probability that a random draw from the prior generates the training data



Probability that a random draw from the prior generates the training data

Model selection

Probability that a random draw from the prior generates the training data

Model selection

Hyperparameter tuning

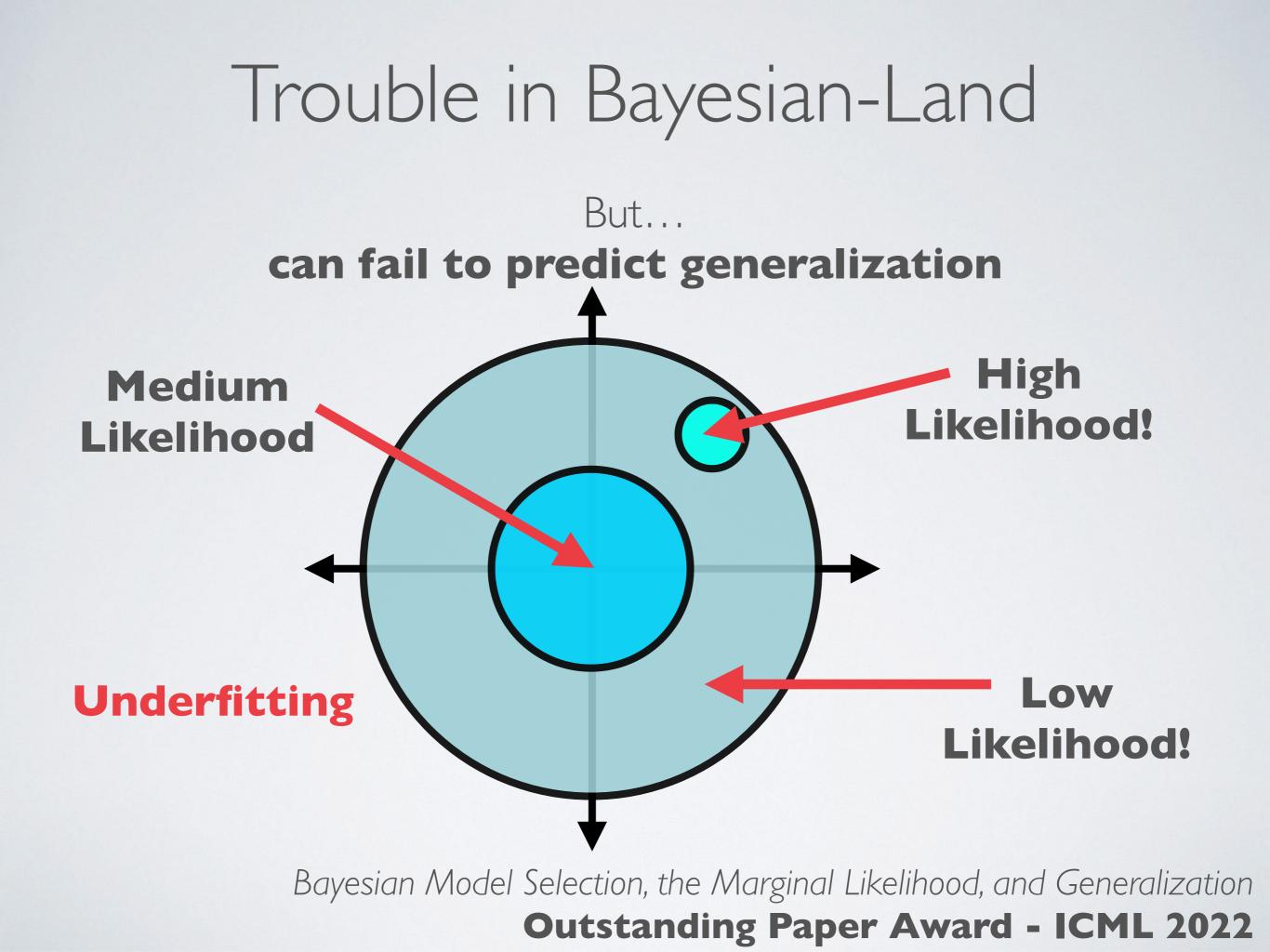
Probability that a random draw from the prior generates the training data

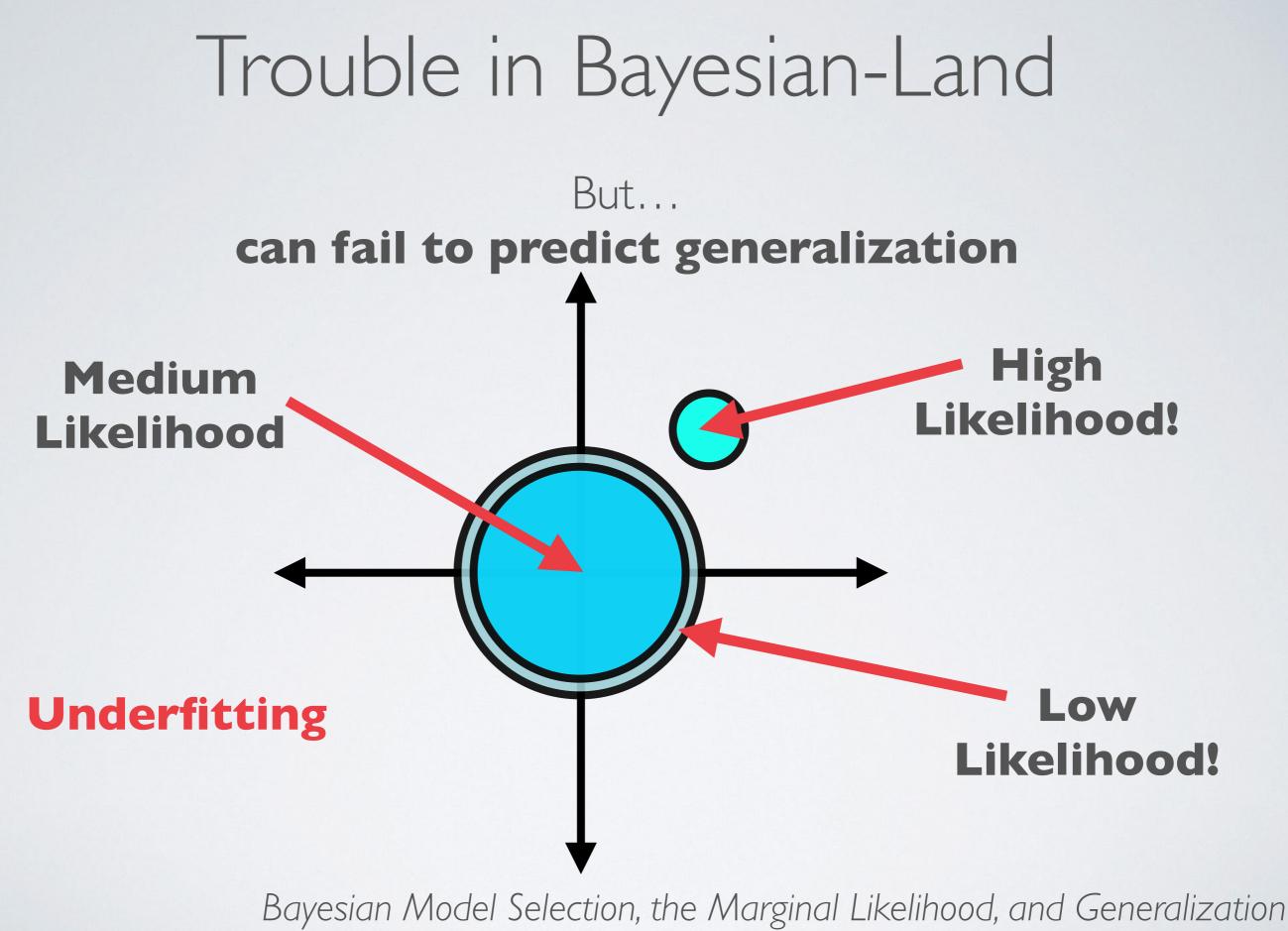
- Model selection
- Hyperparameter tuning
- Hypothesis testing

Trouble in Bayesian-Land

But... can fail to predict generalization

Trouble in Bayesian-Land But... can fail to predict generalization Overfitting $p(\mathcal{D}|\mathcal{M})$ Overfit Model Appropriate Model Complex Model Target Dataset $\hat{\mathcal{D}}$ \mathcal{D}





Outstanding Paper Award - ICML 2022

Why does the marginal likelihood fail to predict generalization?

The Marginal Likelihood and PAC-Bayes

• Minimum description length (MacKay 2003)

• Marginal likelihood ⇔ PAC-Bayes bound (Germain et al. 2016)

Goal: choose between k models Which ones generalize better?

Goal: choose between k models Which ones generalize better?

Construct a bound for each model

Goal: choose between k models Which ones generalize better?

Construct a bound for each model

Probability of bounds holding: $1 - \delta \longrightarrow 1 - k\delta$

What does PAC-Bayes say about tuning the prior?

Construct a bound for each model

Probability of bounds holding: $1 - \delta \longrightarrow 1 - k\delta$

Keep high probability bound, but looser $\log(n/\delta) \longrightarrow \log(kn/\delta)$

$$\mathbb{E}_{h\sim Q} \left[R\left(h\right) \right] \leq \mathbb{E}_{h\sim Q} \left[\hat{R}\left(h\right) \right] + \sqrt{\frac{\mathbb{KL}(Q \parallel P) + \log(kn/\delta) + 2}{2n - 1}}$$

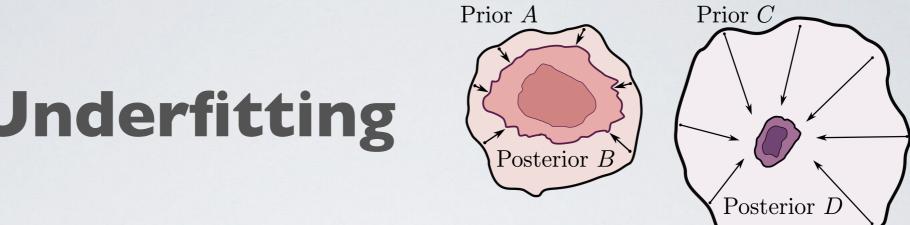
What does PAC-Bayes say about tuning the prior?

Probability of bounds holding: $1 - \delta \longrightarrow 1 - k\delta$

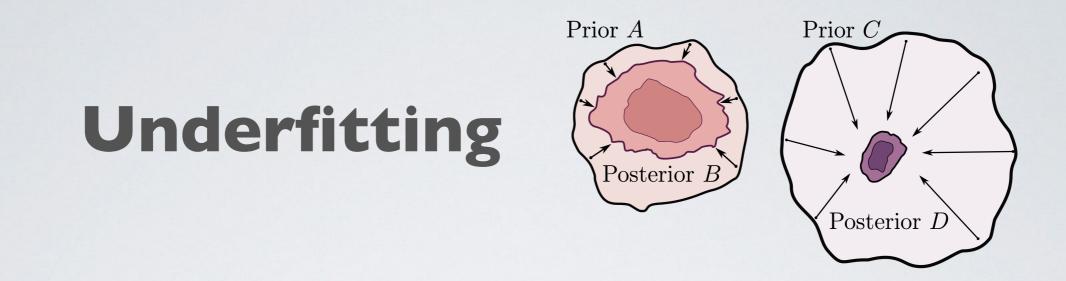
Keep high probability bound, but looser $\log(n/\delta) \longrightarrow \log(kn/\delta)$

Cost: log(k)

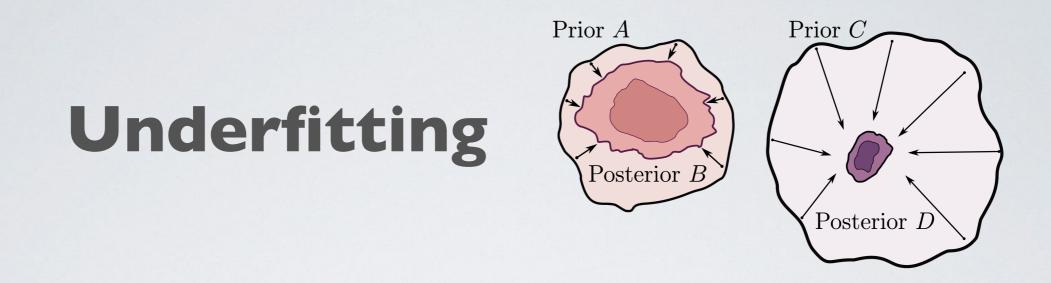
$$\mathbb{E}_{h\sim Q} \left[R\left(h\right) \right] \leq \mathbb{E}_{h\sim Q} \left[\hat{R}\left(h\right) \right] + \sqrt{\frac{\mathbb{KL}(Q \parallel P) + \log(k) + \log(n/\delta) + 2}{2n - 1}}$$



Underfitting

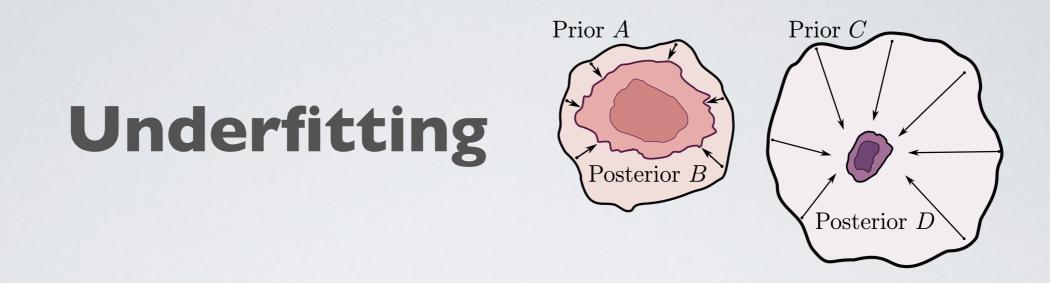


Marginal likelihood hates diffuse priors \longrightarrow Let prior contract before you measure the likelihood



Marginal likelihood hates diffuse priors — Let prior contract before you measure the likelihood

Conditional marginal likelihood: $p(\mathcal{D}_{\geq m} | \mathcal{D}_{< m})$ Better aligned with generalization



Marginal likelihood hates diffuse priors \longrightarrow Let prior contract before you measure the likelihood

Sharper PAC-Bayes bounds via data-dependent priors (Dziugaite et al. 2020)

Wrap Up

 Neural networks admit simple solutions, despite having so many parameters.

Wrap Up

- Neural networks admit simple solutions, despite having so many parameters.
- Generalization bounds can predict generalization phenomena or problems with marginal likelihood.

Wrap Up

- Neural networks admit simple solutions, despite having so many parameters.
- Generalization bounds can predict generalization phenomena or problems with marginal likelihood.
- Can generalization theory inform deep learning in practice?

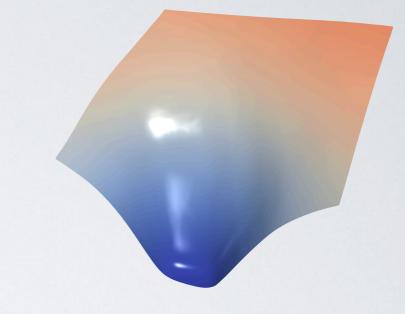
Wrap Up

- Neural networks admit simple solutions, despite having so many parameters.
- Generalization bounds can predict generalization phenomena or problems with marginal likelihood.
- Can generalization theory inform deep learning in practice?

How far can we push generalization?

Why do neural networks work?

What are the properties of good minima and why do optimizers find them?

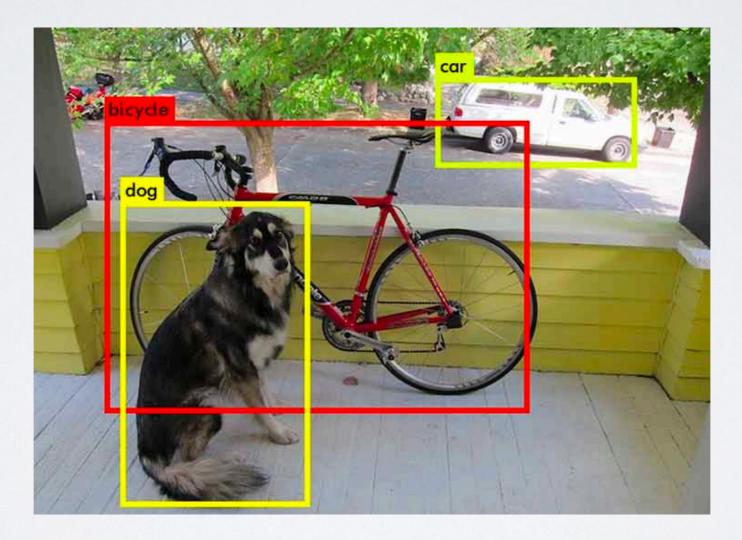


Theories that predict generalization

Observing generalization in reasoning problems

Machines are better than humans at...

Pattern matching



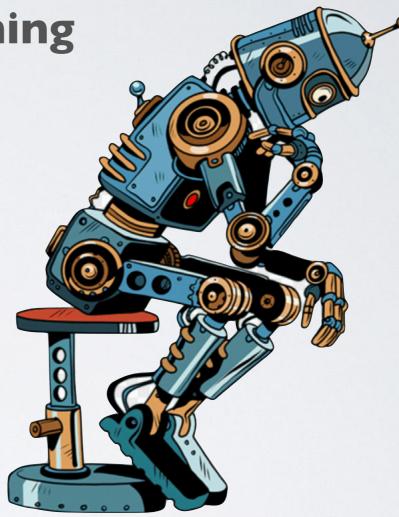
Humans are better than machines at...

Logical reasoning

Proof writing

Causality determination

Domain shift



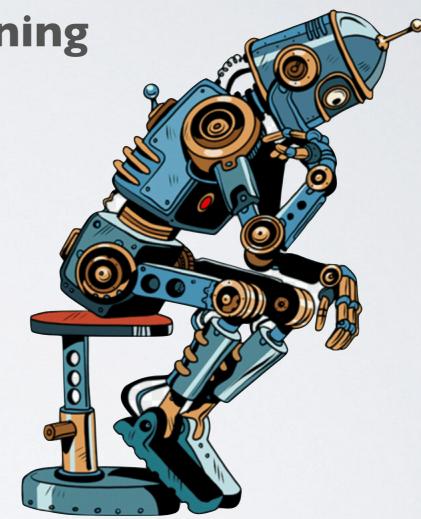
Humans are better than machines at...

Logical reasoning

Proof writing

Causality determination

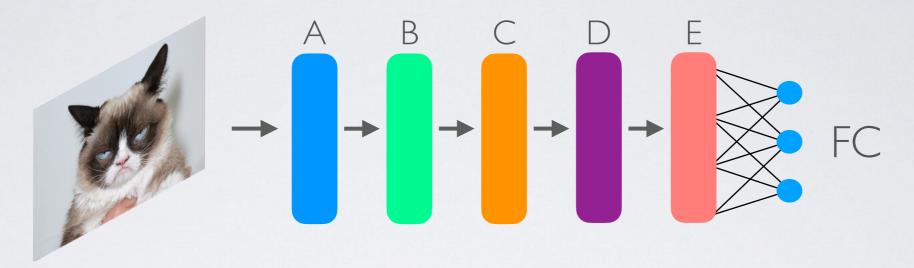
Domain shift



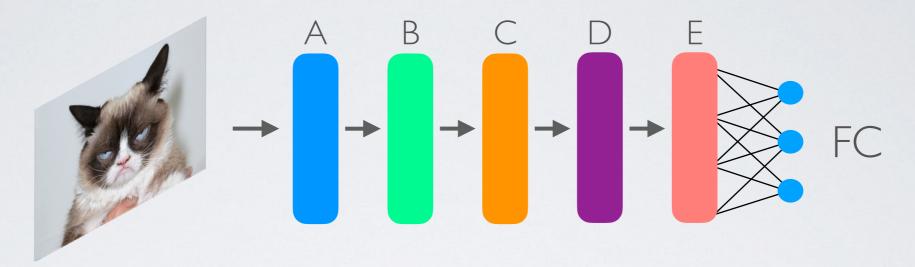
Solve problems of higher complexity by "thinking for longer"

Getting started: replace feed-forward computation with recurrence

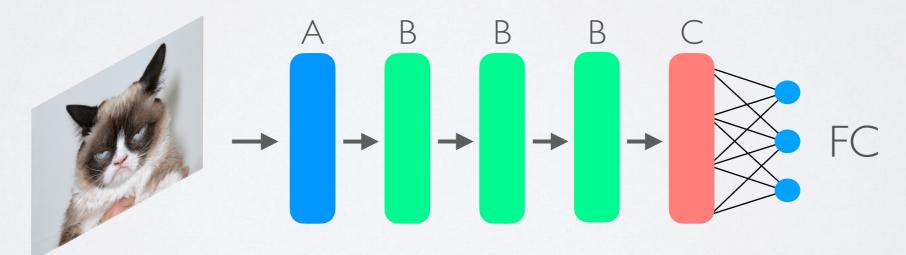
Feed-forward model



Feed-forward model



Recurrent model



Can recurrent nets extrapolate knowledge by "thinking"?

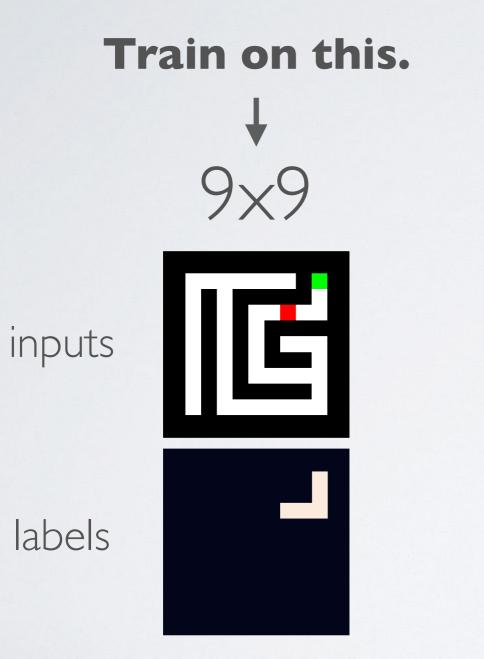
Procedurally generated mazes

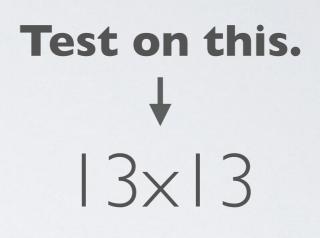
Train on this.

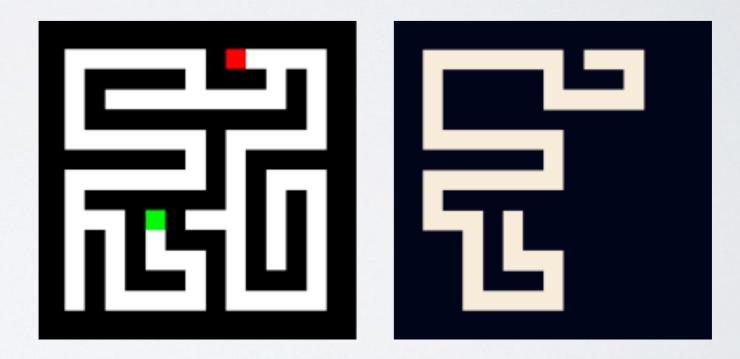
inputs

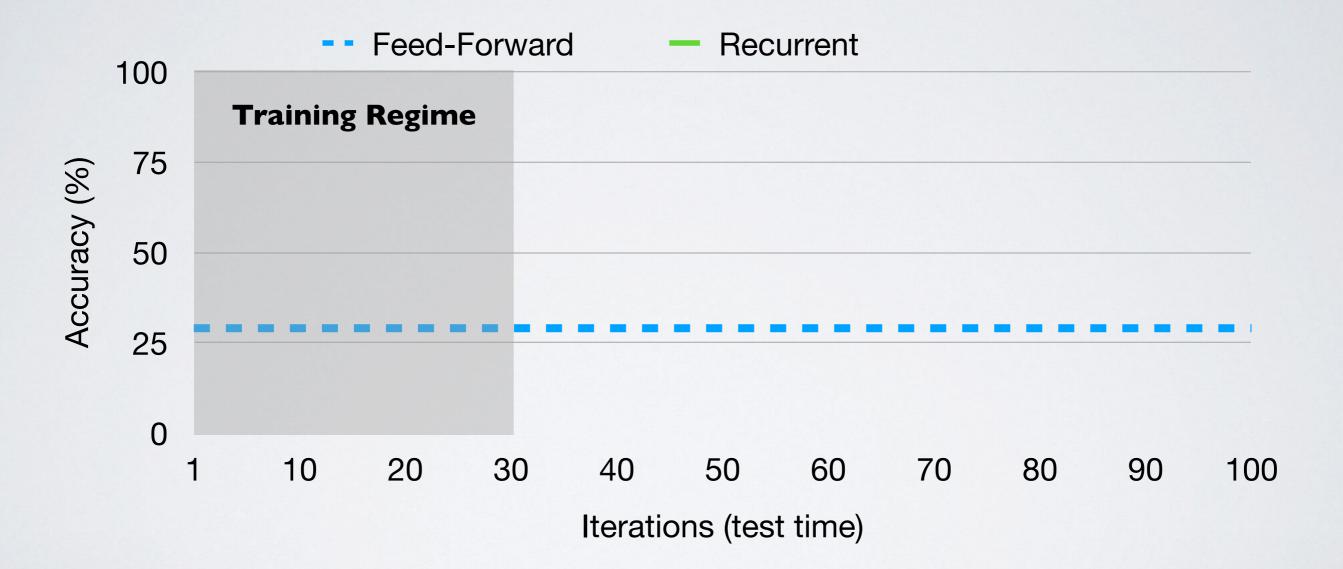
labels

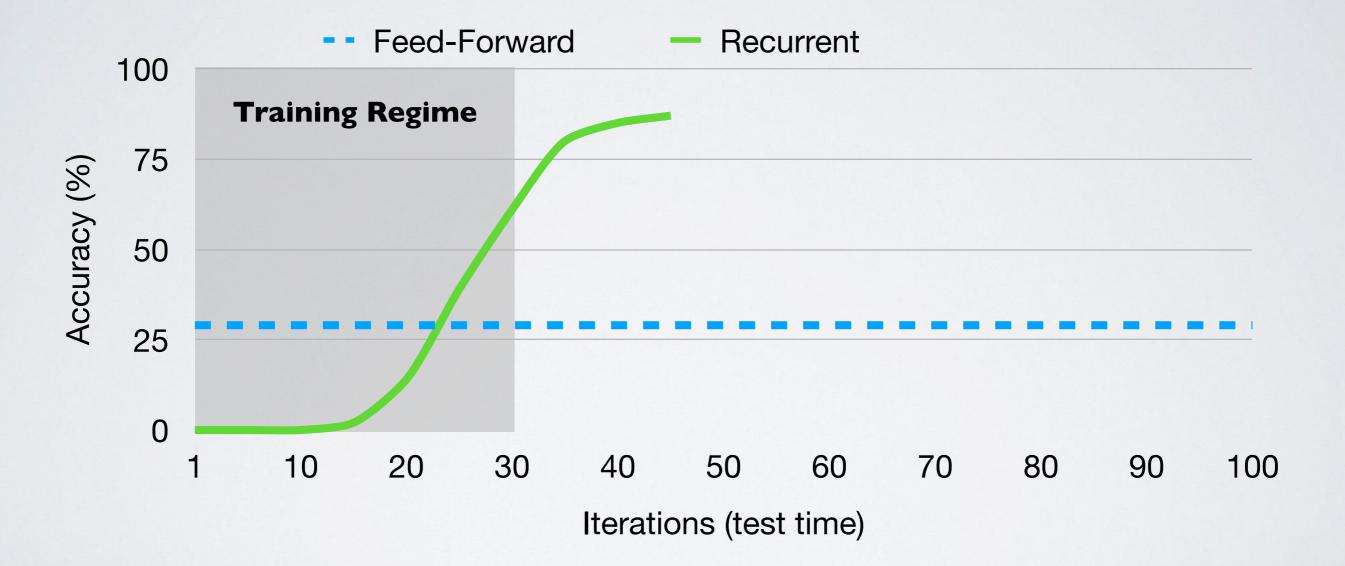
Procedurally generated mazes



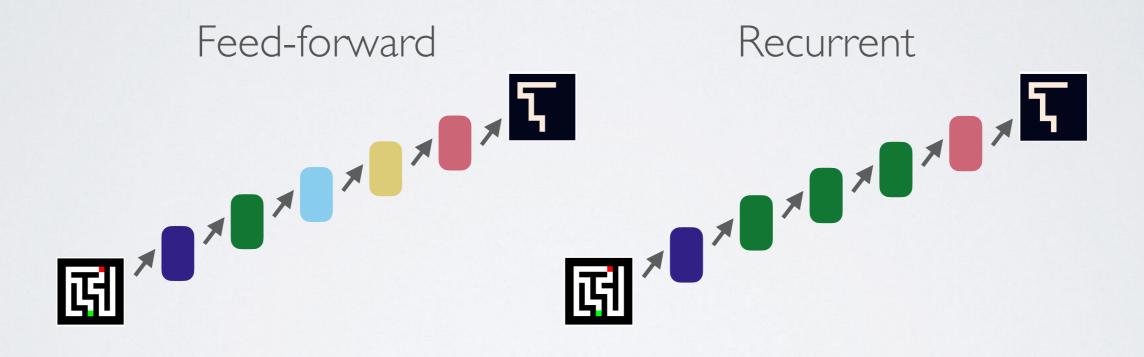




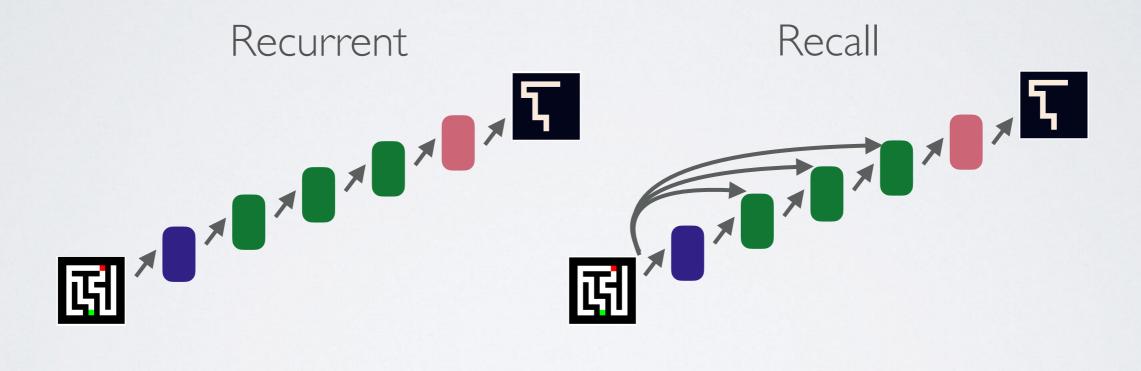




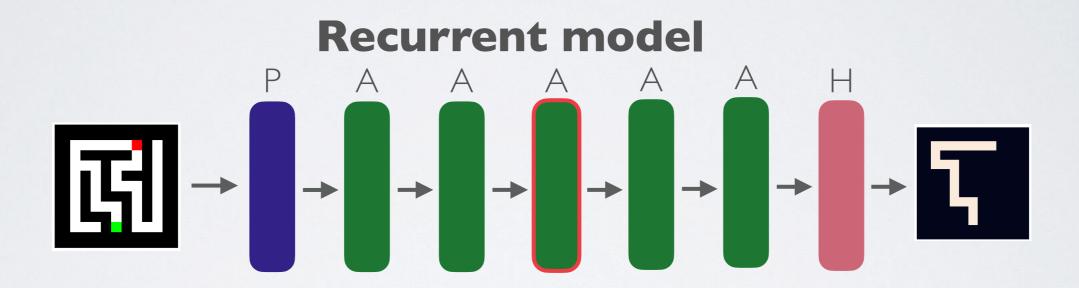
Architecture Improvement



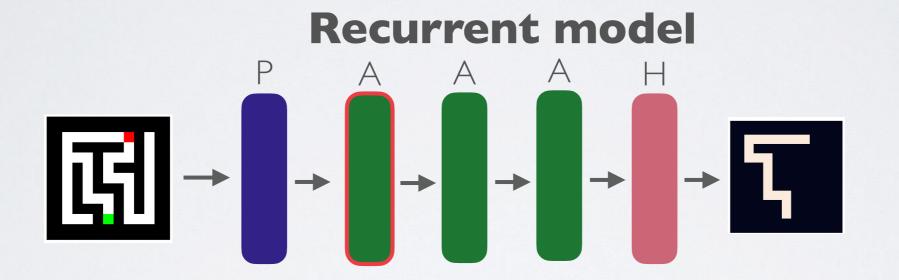
Architecture Improvement

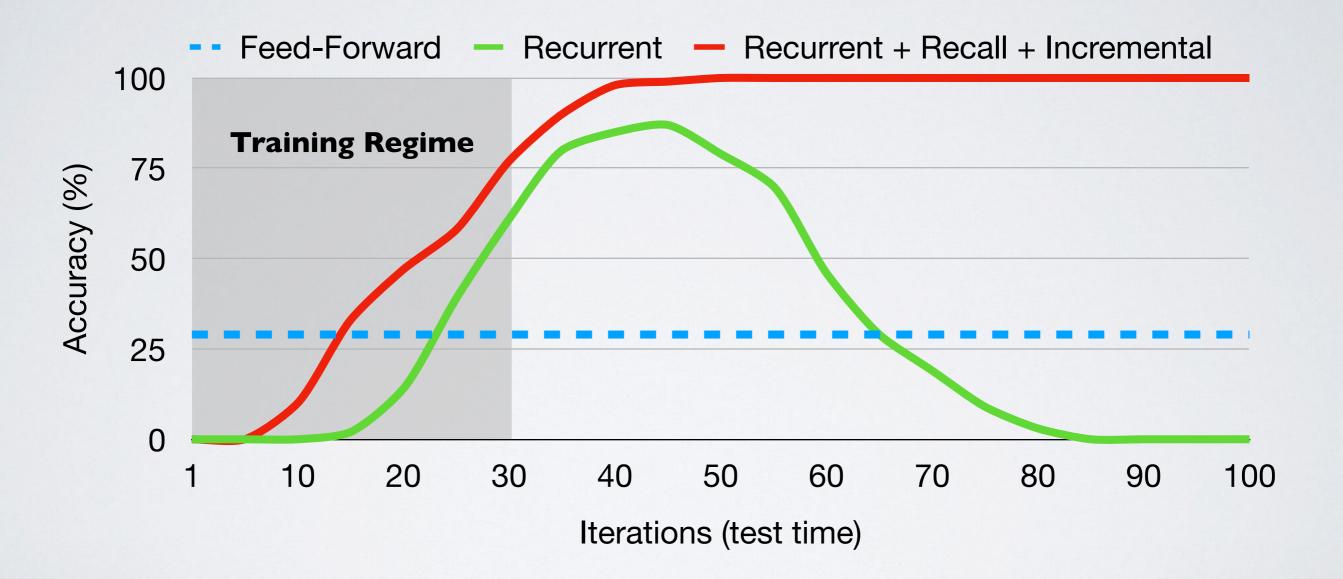


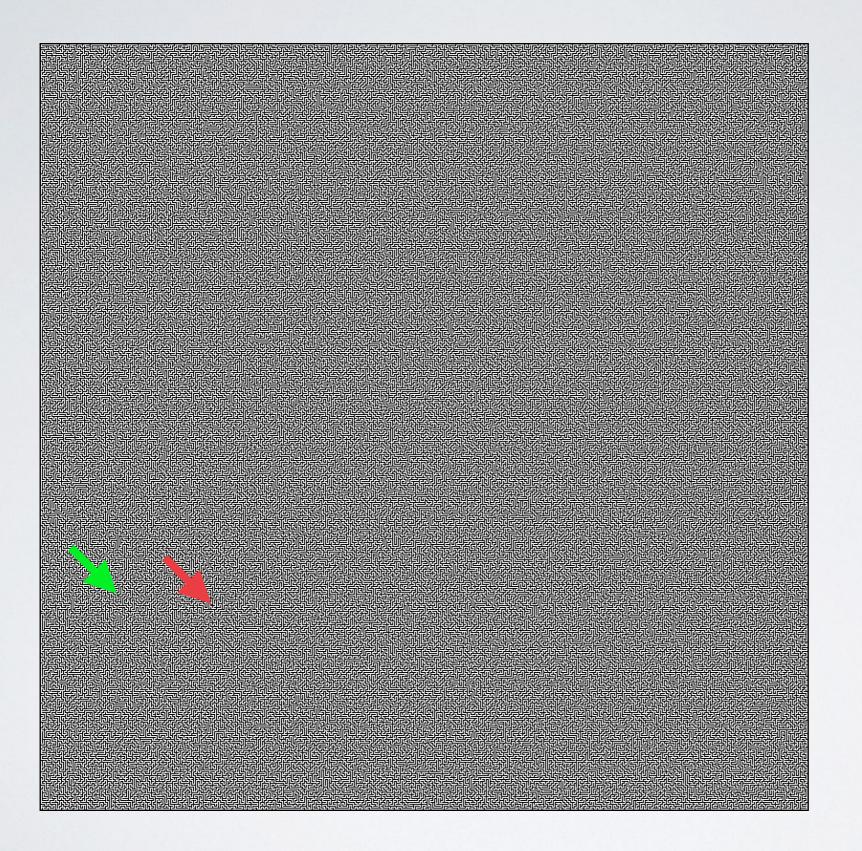
Incremental Training



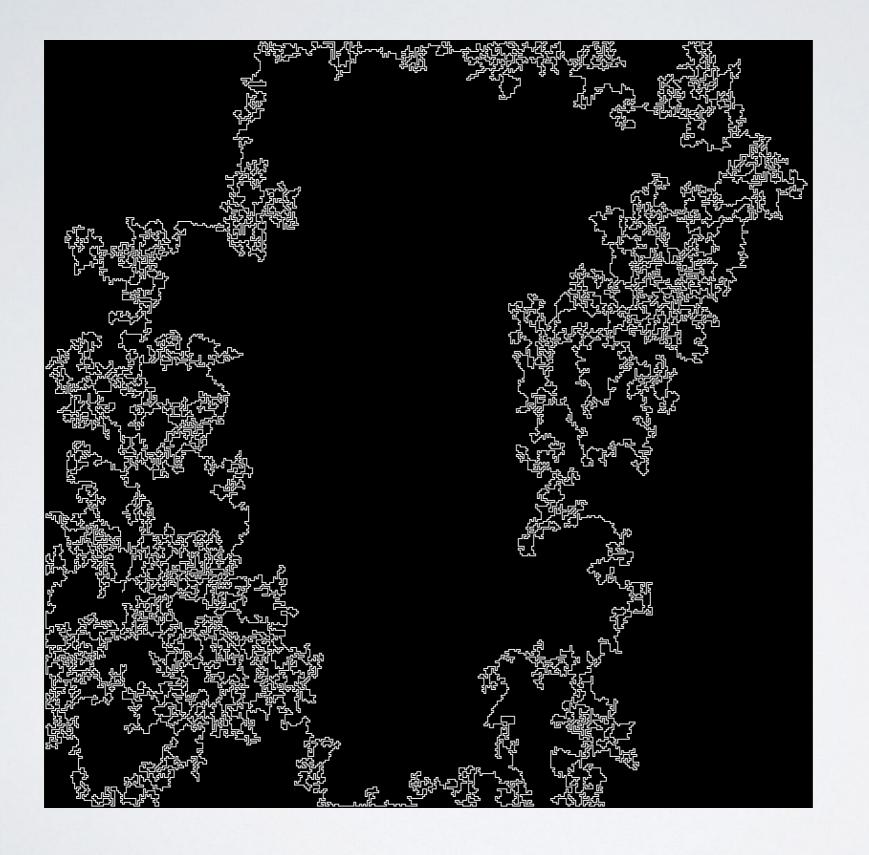
Incremental Training



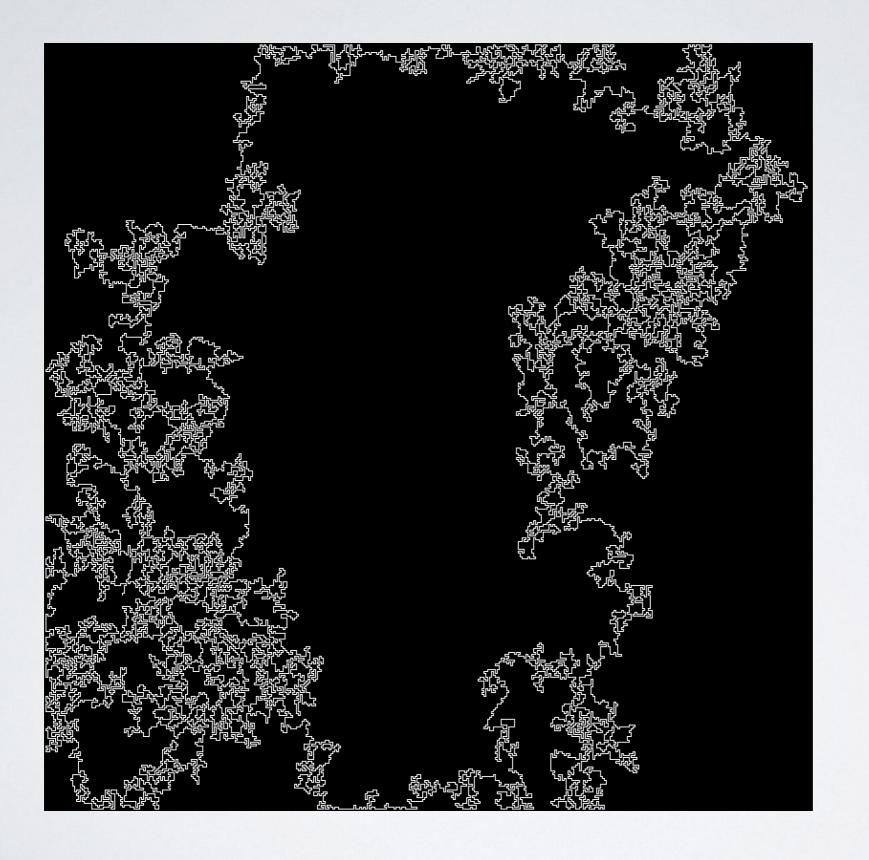




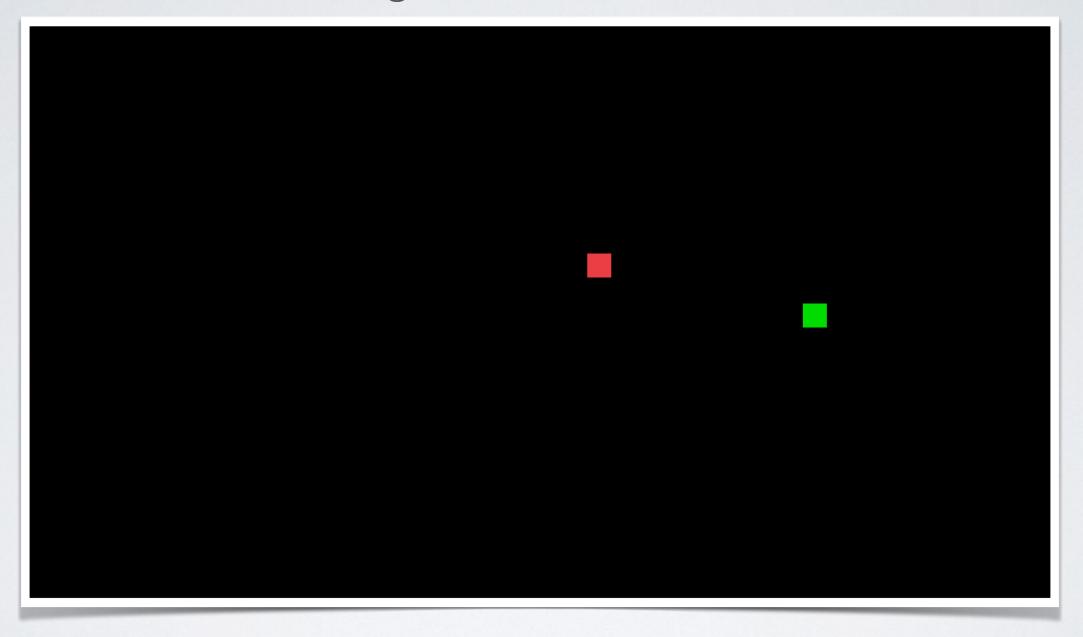
801x801



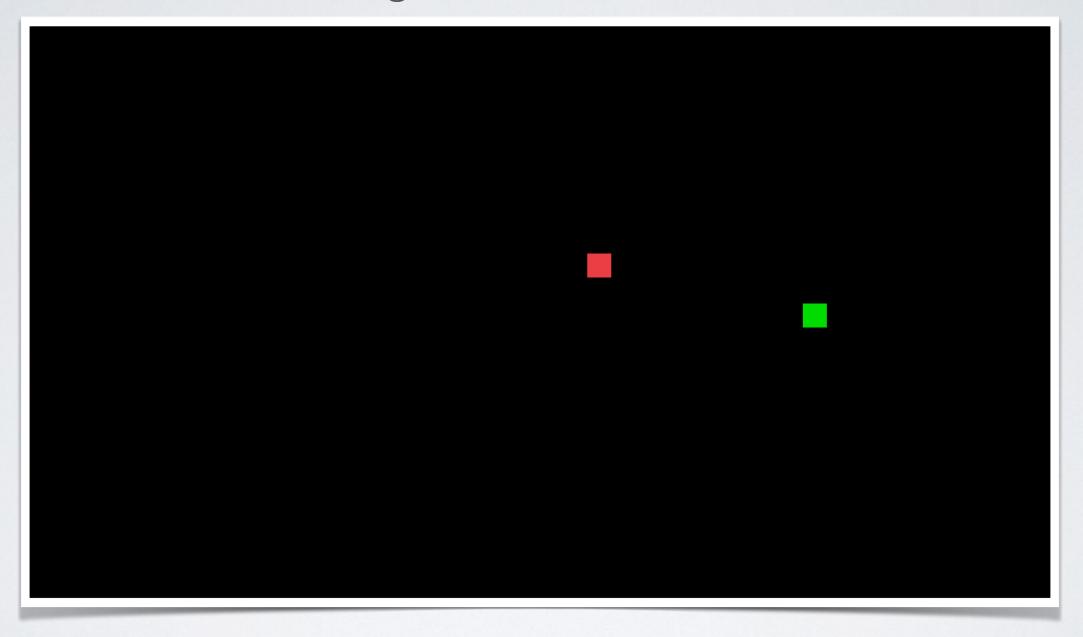
108x108



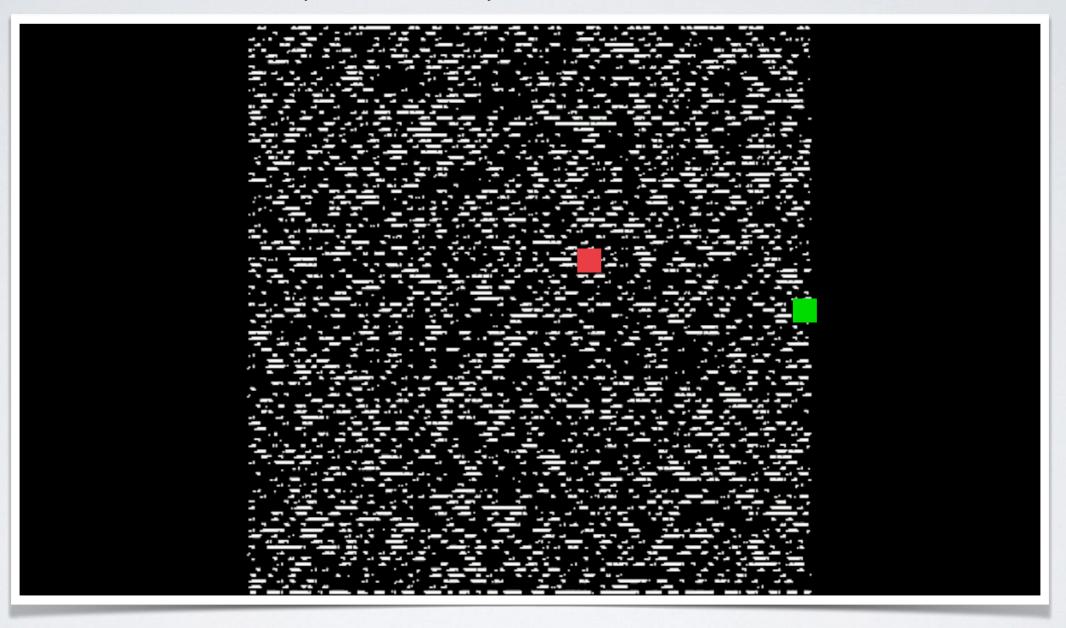
Solving a maze: start to finish



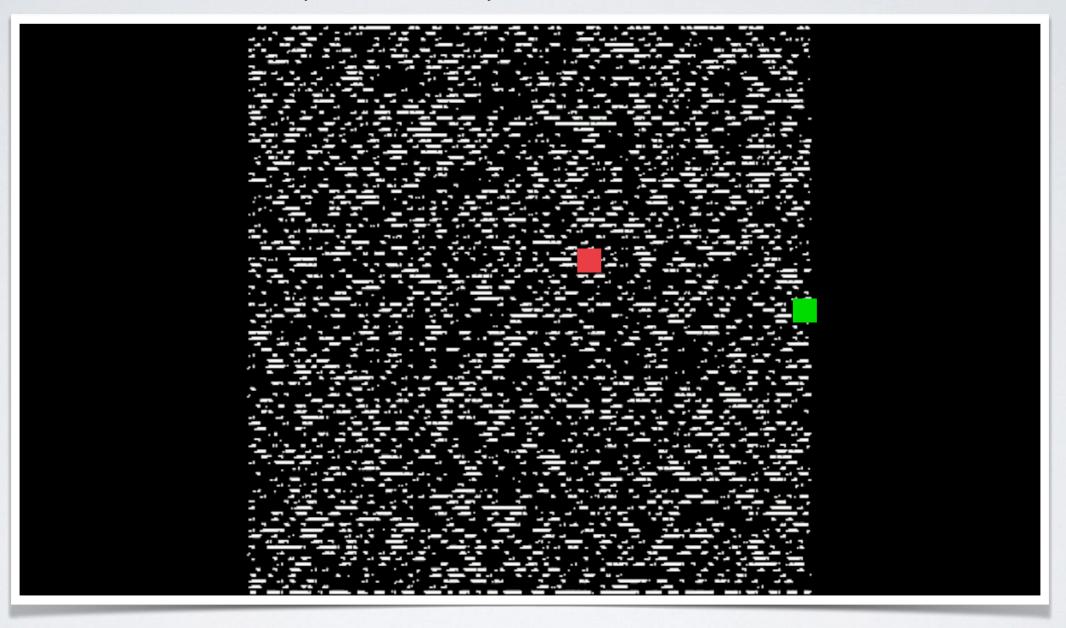
Solving a maze: start to finish



Corrupt memory with Gaussian noise



Corrupt memory with Gaussian noise

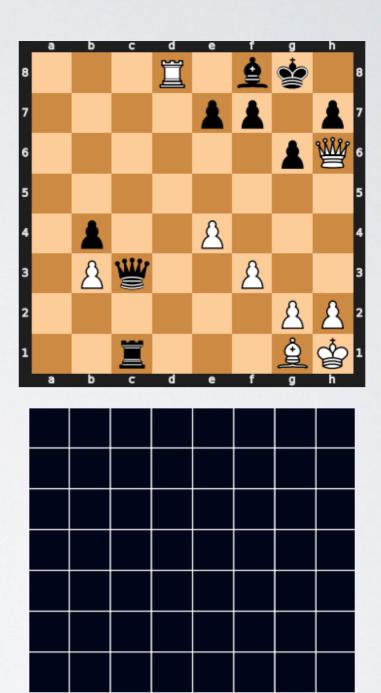


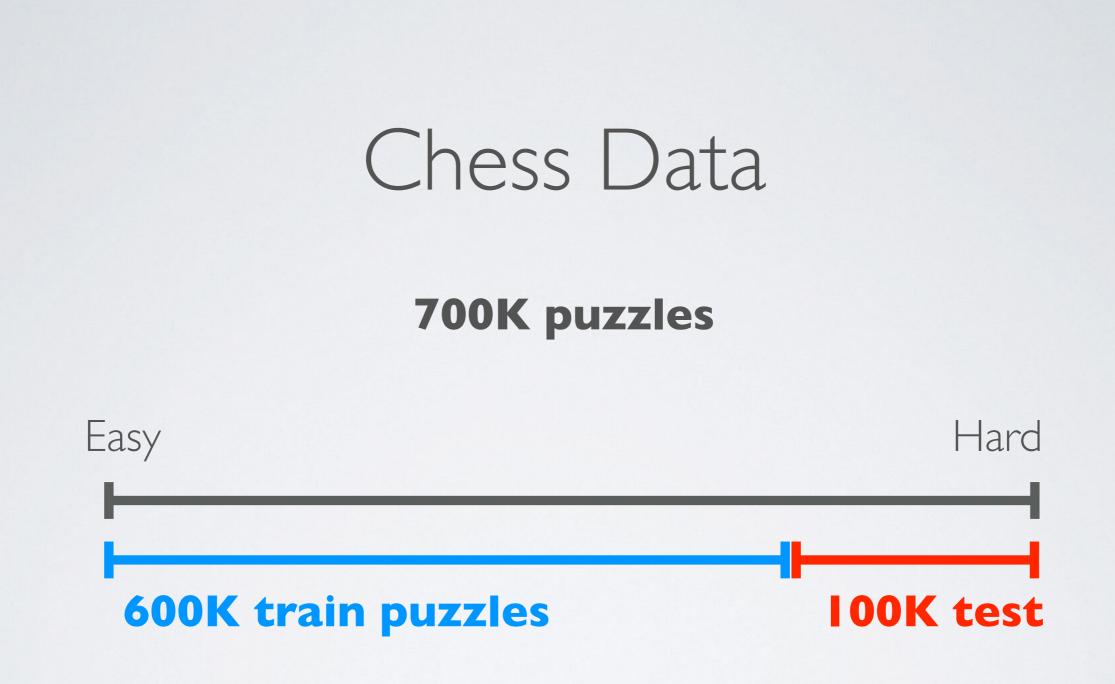
CHALLENGE PROBLEM Chess

"Chess puzzles"

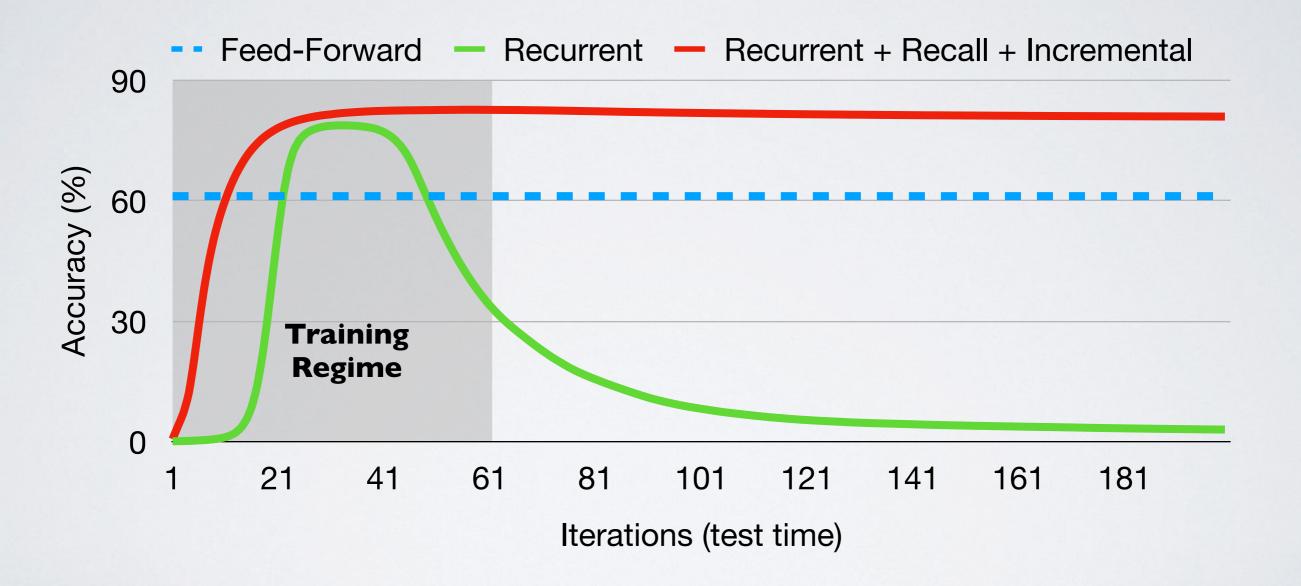
Game scenarios that have clear "best move"

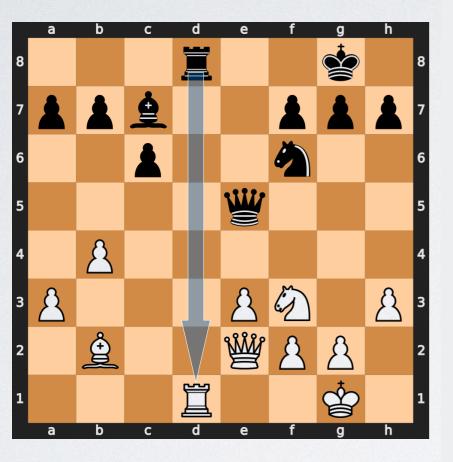
Each puzzle has an Elo rating from human play.

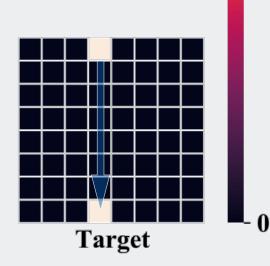


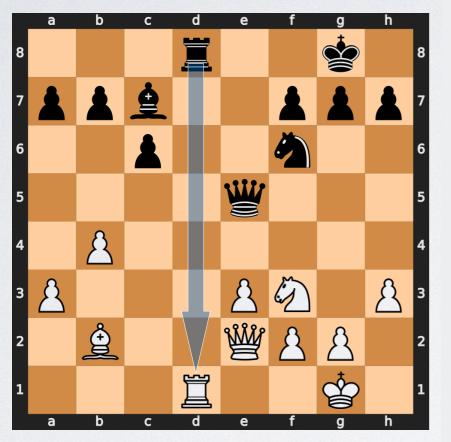


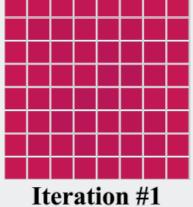
Chess

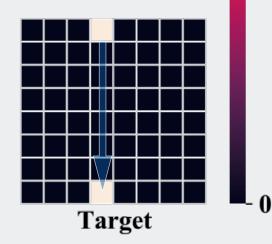




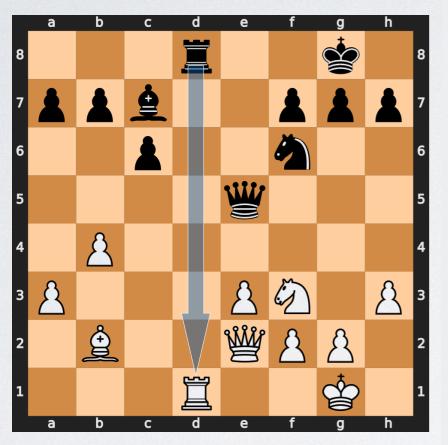


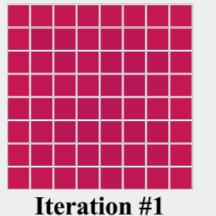


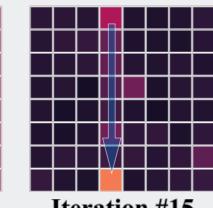


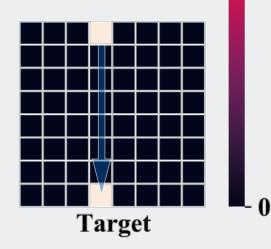


- 1

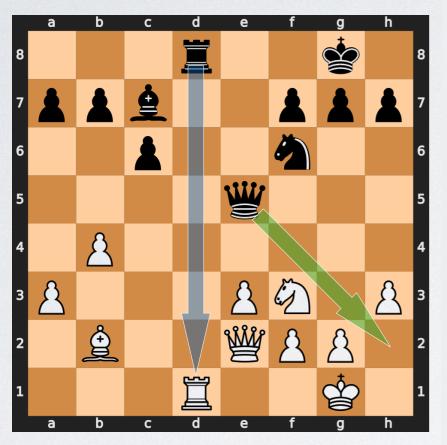


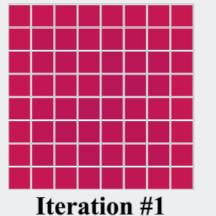


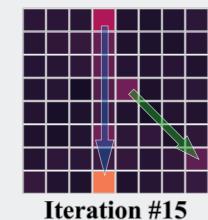


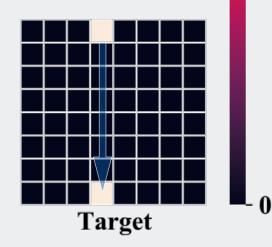


- 1

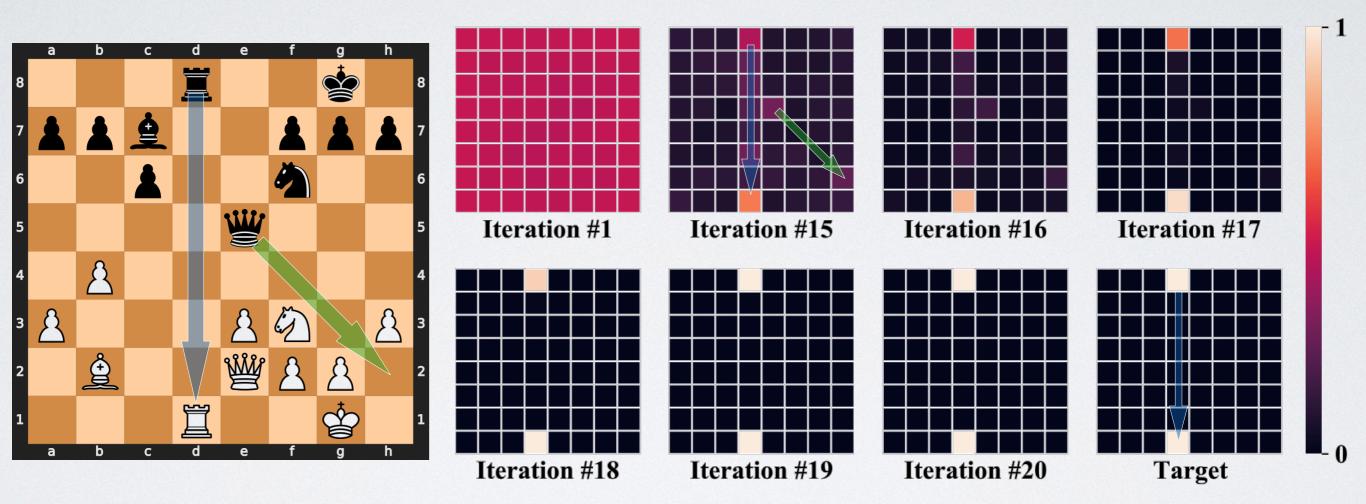








- 1



Generalize to "hard" problems that lie outside the training distribution.

Generalize to "hard" problems that lie outside the training distribution.

See only the *problem* and *solution*, and organically learn algorithms end-to-end.

Generalize to "hard" problems that lie outside the training distribution.

See only the *problem* and *solution*, and organically learn algorithms end-to-end.

Can we replace hand-crafted algorithms?

Generalize to "hard" problems that lie outside the training distribution.

See only the *problem* and *solution*, and organically learn algorithms end-to-end.

Can we replace hand-crafted algorithms?

What can humans do that neural networks can't?

Thanks!

Andrew Wilson

Tom Goldstein

Avi Schwarzschild

Ping Chiang

Jonas Geiping

Sanae Lotfi

Arpit Bansal

Ronny Huang

