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What are the properties of
good minima and why do
optimizers find them?

Theories that predict
oeneralization

Observing generalization In
reasoning problems
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Suboptimal Local Minima

Assumptions:

» Continuous loss function &

* MLP with RelLUs, minimum features per layer m
* Linear model with rank(W) < m

Theorem (informal): i the NN can achieve lower training
loss than the linear model, it has a suboptimal local minimum.

linear model’s loss

suboptimality gap

Extensions:
- Convolutional networks
* Replace linear models with smaller neural nets

Truth or Backpropaganda, |CLR 20
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S0 why do we find good minima!

The optimizer?

Stochastic training is not necessary for generalization, |CLR 22
Gradient-based optimization is not necessary for generalization, |CLR 23
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The sharp vs. flat dilemma

By Flat
“Good” minima are ‘“flat”

Hochrerter & Schmidhuber; Flat Minima 97/
Chaudhari et al, Entropy SGD *| /
Keskar et al, On large batch training | /

Li et al,Visualizing the loss landscape *| 3

“Flat” minima are “good”
Dziugaite & Roy, Computing non-vacuous ‘| /
& | Y > | & | | Sharp
Izmalilov et al, Averaging weights | 8
Foret et al, Sharpness aware minimization 2 |

Gelping et al, Stochastic training Is not necessary 2 |

...but you have to define “sharp” carefully

Dinh, Pascanu, Bengio & Bengio,
Sharp minima can generalize for deep nets | /
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Wil Incompressible solutions
oeneralize!
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Flat minima in high dimensions

flat minima — higher volume
dimensionality amplifies volume differences

easy to find big targets

Understanding generalization through visualizations, Under Review,
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How to quantify the volume of basins around minima?

Cutoff

l0ss=0. |
b z = Monte Carlo Integrator
i —Volume

Understanding generalization through visualizations, Under Review,
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Why do neural networks work!

What are the properties of good

minima and why do optimizers
find them!?

Theories that predict
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Observing generalization In
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An Anatomy of
Generalization

MeAlleser |

PAC-Bayes

Bounds

998)

P - prior (over parameters)

Q - posterior

With probabllity at least 1 — 46,

A KL(Q || P) + log(n/d)
= E [R (A
E [R (h)] < E IR (1) +\/ =
Risk (test error)  Empirical Risk Complexity

(train error)
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flat minima = compressible posteriors
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By choosing parameters, we can encode more information!

Diffuse posteriors achieve better bounds

KL(Q || P) = H(Q, P) — H(Q)

Cross-Entropy
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How to craft tight bounds

* Frame the problem in terms of compression
* Reduce the number of parameters

* [ransfer learning
* Quantization

* Arithmetic coding

PAC-Bayes Compression Bounds So Tight... NeurlPS 22
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Can our theory predict important
phenomena in real architectures?
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The Marginal Likelihood

Marginal likelihood: p(D|M) = Jp(D\M, w)p(w | M)dw

Probability that a random draw from the prior
generates the training data

- Model selection
* Hyperparameter tuning

* Hypothesis testing

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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1he Marginal Likelihooa
and PAC-Bayes

* Minimum description length (MacKay 2003)

- Marginal likelihood & PAC-Bayes bound (Germain et al. 201 6)

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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What does PAC-Bayes say about
tuning the prior?
Construct a bound for each model

Probability of bounds holding:
1—-6—1-k6

Keep high probability bound, but looser
log(n/o) — log(kn/o)

E [r(n)] < E R () +\/M<Q”P“W
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What does PAC-Bayes say about
tuning the prior?

Probability of bounds holding:
1-6—1-ko6

Keep high probability bound, but looser
log(n/6) — log(kn/o)

Cost: log(k)

[R (h)] < E [R(h)] +\/ KL(Q [ P) Hlog(b)F+ Tog(n/5) + 2

h~Q 2n—1

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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Underfitting

'\
/P4osteriork

Marginal likelihood hates diffuse priors — Let prior contract
before you measure the likelihood

Conditional marginal likelihood: p(9s,,| 9 .,,)

Better alighed with generalization

|

Sharper PAC-Bayes bounds via data-dependent priors (Dziugaite et al. 2020)

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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* Neural networks admit simple solutions, despite having
SO many parameters.

* Generalization bounds can predict generalization
phenomena or problems with marginal likelihood.

» Can generalization theory inform deep learning In
practice?

How far can we push generalization?




Why do neural networks work!

What are the properties of good

minima and why do optimizers
find them!?

Theories that predict
oeneralization

Observing generalization in
reasoning problems
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Humans are better than machines at...

Logical reasoning

Proof writing

Causality determination

Domain shift

Solve problems of higher complexity by
“thinking for longer”



Getting started: replace feed-forward
computation with recurrence

Can You Learn an Algorithm? NeurlPS "2 |



Feed-forward model

A B & D o
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Feed-forward model

A B & D =

Recurrent model
A B B B @
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Can recurrent nets extrapolate
knowledge by “thinking

Can You Learn an Algorithm? NeurlPS "2 |
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Archrtecture Improvement

Feed-forward Recurrent

f"

End-to-end Algorithm Synthesis with Recurrent Networks, NeurlPS "22



Archrtecture Improvement

Recurrent Recall

End-to-end Algorithm Synthesis with Recurrent Networks, NeurlPS "22
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Recurrent model
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Accuracy (%)

Bin on 9x9 — Jest on | 3%ES
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801x801

20,000
“thoughts”

100,004
layers
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Solving a maze: start to finish
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CHALLENGE PROBLEM
Chess
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lichess.org
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Relie=s plzzles™

@ ec cechialios that
have clear ‘best move”

Each puzzie has an
Elo rating from
human play.
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Chess Data

700K puzzies

Fasy Hard
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Chess Data

700K puzzies

Fasy Hard
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Chess
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Chess Puzzles
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Chess Puzzles
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Chess Puzzles

Iteration #1
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Chess Puzzles

Iteration #1
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Some thoughts about thinking...
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Some thoughts about thinking...

Generalize to "hard” problems that lie outside
the training distribution.
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Some thoughts about thinking...

Generalize to "hard” problems that lie outside
the training distribution.

See only the problem and solution, and
organically learn algorithms end-to-end.

Can we replace hand-crafted algorithms?

What can humans do that neural networks can't?
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Andrew Wilson Tom Goldstein  Avi Schwarzschild Ping Chiang

Arpit Bansal Ronny Huang



