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What are the properties of 
good minima and why do 
optimizers find them?

Theories that predict 
generalization

Observing generalization in 
reasoning problems
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Understanding generalization through visualizations, Under Review

1. Suboptimal local minima

2. Global minima that generalize poorly
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Suboptimal Local Minima

Theorem (informal):  if the NN can achieve lower training 
loss than the linear model, it has a suboptimal local minimum.

Assumptions:
• Continuous loss function ℒ
• MLP with ReLUs, minimum features per layer m
• Linear model with rank(W ) ≤ m

Extensions:
• Convolutional networks
• Replace linear models with smaller neural nets

Truth or Backpropaganda, ICLR ‘20

suboptimality gap
linear model’s loss

NN loss



Are all global minima good?

Global minima that generalize poorly
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So why do we find good minima?

The optimizer?

Stochastic training is not necessary for generalization, ICLR ‘22
Gradient-based optimization is not necessary for generalization, ICLR ‘23
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and bad minima?
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The sharp vs. flat dilemma
“Good” minima are “flat”

Hochreiter & Schmidhuber,  Flat Minima ‘97 
Chaudhari et al, Entropy SGD ‘17

Keskar et al, On large batch training ‘17
Li et al, Visualizing the loss landscape ‘18

...but you have to define “sharp” carefully 
Dinh, Pascanu, Bengio & Bengio, 

Sharp minima can generalize for deep nets ‘17

Dziugaite & Roy, Computing non-vacuous ‘17
Izmailov et al, Averaging weights ‘18

Foret et al, Sharpness aware minimization ‘21
Geiping et al, Stochastic training is not necessary ‘21
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bad min

good min

All minima fit the train data
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Will incompressible solutions 
generalize? 

? ?

?



A good minimum
100% train   97% test

A bad minimum
100% train  28% test

Understanding generalization through visualizations, Under Review

Street View House Numbers
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Flat minima in high dimensions 

flat minima → higher volume

dimensionality amplifies volume differences

easy to find big targets

Understanding generalization through visualizations, Under Review
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How to quantify the volume of basins around minima?

Basin Monte Carlo Integrator
→Volume

Cutoff
loss=0.1

Understanding generalization through visualizations, Under Review
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- prior (over parameters)

+
𝕂𝕃(Q ∥ P) + log(n/δ) + 2

2n − 1

P
Q - posterior

Risk (test error) Empirical Risk 
(train error)

Complexity

𝔼
h∼Q [R (h)] ≤ 𝔼

h∼Q
[R̂ (h)]

With probability at least         , 1 − δ

An Anatomy of PAC-Bayes
Generalization Bounds

(McAllester 1998)
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𝕂𝕃(Q ∥ P) = H(Q, P) − H(Q)

Cross-Entropy Shannon 
Entropy

Diffuse posteriors achieve better bounds 

flat minima → compressible posteriors
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• Frame the problem in terms of compression

• Reduce the number of parameters

• Transfer learning

• Quantization

• Arithmetic coding

How to craft tight bounds

PAC-Bayes Compression Bounds So Tight… NeurIPS ‘22
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Can our theory predict important 
phenomena in real architectures?
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• Model selection

• Hyperparameter tuning

• Hypothesis testing

Marginal likelihood:   

Probability that a random draw from the prior 
generates the training data

p(D |M) = ∫ p(D |M, w)p(w |M)dw

The Marginal Likelihood

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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But…
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Medium
Likelihood
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Underfitting
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Why does the marginal likelihood fail 
to predict generalization?



• Marginal likelihood ⇔ PAC-Bayes bound (Germain et al. 2016)

The Marginal Likelihood
and PAC-Bayes

• Minimum description length (MacKay 2003)

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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What does PAC-Bayes say about 
tuning the prior?

Goal: choose between  models
Which ones generalize better?

k

Probability of bounds holding:
1 − δ ⟶ 1 − kδ

Construct a bound for each model

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022



What does PAC-Bayes say about 
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Keep high probability bound, but looser
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What does PAC-Bayes say about 
tuning the prior?

Keep high probability bound, but looser
log(n/δ) ⟶ log(kn/δ)

Probability of bounds holding:
1 − δ ⟶ 1 − kδ

Cost:  log(k)

+
𝕂𝕃(Q ∥ P) + log(k) + log(n/δ) + 2

2n − 1
𝔼

h∼Q [R (h)] ≤ 𝔼
h∼Q

[R̂ (h)]

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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Underfitting

Marginal likelihood hates diffuse priors  Let prior contract 
before you measure the likelihood 

⟶
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Conditional marginal likelihood:  
Better aligned with generalization

p(𝒟≥m |𝒟<m)

Underfitting

Marginal likelihood hates diffuse priors  Let prior contract 
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Conditional marginal likelihood:  
Better aligned with generalization

p(𝒟≥m |𝒟<m)

Sharper PAC-Bayes bounds via data-dependent priors (Dziugaite et al. 2020)

Underfitting

Marginal likelihood hates diffuse priors  Let prior contract 
before you measure the likelihood 

⟶

Bayesian Model Selection, the Marginal Likelihood, and Generalization
Outstanding Paper Award - ICML 2022
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• Neural networks admit simple solutions, despite having 
so many parameters.

• Generalization bounds can predict generalization 
phenomena or problems with marginal likelihood.

• Can generalization theory inform deep learning in 
practice?

How far can we push generalization? 
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Pattern matching

Machines are better than humans at…
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Logical reasoning

Humans are better than machines at…

Proof writing

Causality determination

Domain shift

Solve problems of higher complexity by 
“thinking for longer”



Getting started:  replace feed-forward 
computation with recurrence

Can You Learn an Algorithm? NeurIPS ‘21
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FC

Feed-forward model

Recurrent model

Can You Learn an Algorithm? NeurIPS ‘21



Can recurrent nets extrapolate 
knowledge by “thinking”?

Can You Learn an Algorithm? NeurIPS ‘21
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Train on this.

Procedurally generated mazes
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Architecture Improvement

Feed-forward Recurrent

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



Architecture Improvement

Recurrent Recall

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



Incremental Training

P A A
Recurrent model

A HA A
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Recurrent model

A HA A

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



Train on 9x9        Test on 13x13

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



Ac
cu

ra
cy

 (%
)

0

25

50

75

100

Iterations (test time)
1 10 20 30 40 50 60 70 80 90 100

Feed-Forward Recurrent Recurrent + Recall + Incremental

Train on 9x9        Test on 13x13

Training Regime

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22





801x801

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



801x801

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



801x801

20,000
“thoughts”

100,004 
layers

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



Solving a maze: start to finish

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22
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Corrupt memory with Gaussian noise
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CHALLENGE PROBLEM
Chess

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22



“Chess puzzles”

Game scenarios that 
have clear “best move”

Each puzzle has an 
Elo rating from 

human play.

End-to-end Algorithm Synthesis with Recurrent Networks, NeurIPS ‘22
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Chess Data
700K puzzles

Easy Hard

600K train puzzles 100K test
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What can humans do that neural networks can’t? 



Thanks!
Tom GoldsteinAndrew Wilson Avi Schwarzschild Ping Chiang

Jonas Geiping Sanae Lotf Arpit Bansal Ronny Huang


