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Why a Foundation Model for Robotics?

e Foundation models enable emergent capabilities and homogenization

o emergent capabilities: emergence of more complex behavior not present in smaller models
homogenization: generalization to combinatorially many downstream use cases
o More is Different for Al, Emergence in LLMs

(@)

~o—LaMDA ~—e—GPT-3 ~—4—Gopher —&— Chinchilla -@-PaLM --

- Random
(A) Mod. (B) IPA (C) Word (D) Persian QA
50 50 50 50
g® 0 g g0
T B € %0 LX)
2
§ 20 22 _E; 2 % 20
g 2 10 %10 £ 10
4] <]
0 0 0 0
10'% 1070 107 104 10'% 10% 107 10% 10'% 10% 107 10% 10'% 10% 102 10%
(E) QA (F) (G) Multi-task NLU  (H) Word in context
k) 70 70 70
60 60 60 60
® 50 T 0 £ IS
40 740 =40 40
1 g g g
£ £ 30 g0 £ 30
<8 20 <8 20 <8 20 2 20
10 10 10 10
0 0 0 0
100 1022 10 102 102 102 100 102 102 1020 1022 102

Model scale (training FLOPs)


https://bounded-regret.ghost.io/more-is-different-for-ai/
https://www.jasonwei.net/blog/emergence

Why a Foundation Model for Robotics?

e Foundation models enable emergent capabilities and homogenization
o emergent capabilities: emergence of more complex behavior not present in smaller models
o homogenization: generalization to combinatorially many downstream use cases
o More is Different for Al, Emergence in LLMs

e An°

‘emergent capabilities” curve might be required for robotics to be useful
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Why not a Foundation Model for Robotics?
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What are the ingredients for a Robotics Foundation
Model?
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Ingredient #1: Design Principles of ML Scaling

e High-capacity architectures, ie. self-attention
e Scaling params and compute and corpus size (tokens)
e Dataset size matters more than quality

Andrej Karpa... & @karpa... - Oct 19,2022
The Transformer is a magnificient neural network

—— Approach 1
—— Approach 2

o e b TR architecture because it is a general-purpose
g T differentiable computer. It is simultaneously:
g : ek o g 1) expressive (in the forward pass)
% Megatron-Turing NLG (530B) 2) optimizable (via backpropagation+gradient
descent)

3) efficient (high parallelism compute graph)




Ingredient #2: Proliferation of Internet-scale Models

e Generative models in {language, coding, vision, audio, ...} experience
emergent capabilities

e Proliferation + acceleration means these models will get better “on their
own” over time

PalLM (540B)
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Sources: “Compute trends across three eras of machine learning”, by ). Sevilla et al., arXiv, 2022; Our World in Data




Ingredient #3: Robotics moves from Online to Offline

Foundation models train on huge amounts of diverse offline datasets

o
Composition of the Pile by Category Dataset # English Img-Txt Pairs
= Academic * Internet = Prose * Dialogue * Misc Public Datasets
MS-COCO 330K
CC3M 3M

Visual Genome 5.4M

WIT 5.5M

CCi12M 12M

RedCaps 12M
YFCC100M 100M*
LAION-5B (Ours) 2.3B

Private Datasets

ackExchange CLIP WIT (OpenAlI) 400M

A ALIGN 1.8B

USPTO Phil NIH |OpenWebText2 BASIC 6.6B

LAION-5B (Laion)

The Pile dataset (Eleuther)



https://arxiv.org/pdf/2101.00027.pdf
https://arxiv.org/pdf/2210.08402.pdf

Ingredient #3: Robotics moves from Online to Offline

e Foundation models train on huge amounts of diverse offline datasets

Composition of the Pile by Category Dataset # English Img_'rxt Pairs
= Academic * Internet = Prose * Dialogue * Misc Public Datasets
MS-COCO 330K
CC3M 3M
Visual Genome 5.4M
WIT 5.5M
CCi2M 12M
RedCaps 12M
YFCC100M 100M*
LAION-5B (Ours) 2.3B

Private Datasets

I e | CLIP WIT (OpenAlI) 400M
e - ALIGN 1.81
USPTO Phil |NIH [OpenWebText2 a YT BASIC 6 .61

The Pile dataset (Eleuther) LAION-5B (Laion)

e Robot learning classically does a lot of online on-policy
learning (RL!) but winds have been shifting



https://arxiv.org/pdf/2101.00027.pdf
https://arxiv.org/pdf/2210.08402.pdf
https://towardsdatascience.com/shifting-winds-in-robot-learning-research-2ead21671a65?gi=b1b8a13bdf08

Detour: Brief History of Robotics at Google Brain

(T —
Replay Buffers
3 off-policy
goal / task m"; rgx :
conditioning - » on-policy

Off— pOIiCy Blocking Actions
evaluation [ =t
QT-Opt Cross Entropy Method I —
’___/\_' m(s) = arg max, Q;(s,a) ;’l ______ o L
real-world robotics QT-Opt 4 >
....... ,>
sim2real / Tan(sm) (e ) Test (Real)
CGAN e " Concurrent Control
- >
train with RL in simulator
2016 - 2020

RL-CycleGAN

“How do we do end-to-end robot
learning in the real world?”



https://arxiv.org/pdf/2006.09001.pdf
https://arxiv.org/pdf/1806.10293.pdf
https://arxiv.org/pdf/2004.06089.pdf
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Detour: Brief History of Robotics at Google Brain

sim2real

goal / task )
conditioning bootstrapping
off-policy BC-0
evaluation
= 7 IL+RL

e

real-world robotics

Scaling real
operations

sim2real /
CGAN

2016 - 2020 2020 - 2022

“How do we do end-to-end robot “How do we scale to many tasks in
learning in the real world?” more complex scenarios?”



https://arxiv.org/pdf/2202.02005.pdf
https://awopt.github.io/
https://karolhausman.github.io/mt-opt/

Detour: Brief History of Robotics at Google Brain

goal / task
conditioning

off-policy
evaluation

QT-Opt

sim2real /
CGAN

rel

sim2real

bootstrapping
ﬁ

MT-Opt

Scaling real
operations

#1: Some methods plateaued at
50-70% success rates

#2: Some methods required
very specific data distributions

How do we satisfy both:
#1 Solve many tasks (>90%)
#2 Improve with “scalable” data

2016 - 2020

“How do we do end-to-end robot
learning in the real world?”

2020 - 2022

“How do we scale to many tasks in

more complex scenarios?”

Spring 2022




Detour: Brief History of Robotics at Google Brain

goal / task sim2real

conditioning ootstrapping
/ Multi-task
. IL+RL Imitation Learning

F "

b
BC-0
MT-Opt

off-policy
evaluation

QT-Opt

e |tachieves >90%!
e |t scales with teleoperated

demonstrations!
sim2real /

CGAN Scaling real
operations
_
2016 - 2020 2020 - 2022 Spring 2022
“How do we do end-to-end robot “How do we scale to many tasks in

learning in the real world?” more complex scenarios?”



Detour: Brief History of Robotics at Google Brain

goal / task sim2real

conditioning bootstrapping
off-policy BC-0
evaluation

QT-Opt

- real-world robotics

Multi-task
Imitation Learning

It achieves >90%!
It scales with teleoperated
demonstrations!

sim2real /
CGAN Scaling real
operations
2016 - 2020 2020 - 2022 Spring 2022
“How do we do end-to-end robot “How do we scale to many tasks in
learning in the real world?” more complex scenarios?”

We went from focusing on online methods to focusing on offline methods. We
decoupled data generation from data consumption.




Turning Ingredients into a Recipe

Ingredients

Lessons



Turning Ingredients into a Recipe

Design Principles of ML
Scaling

|

e High-capacity
architectures

Lessons (attention)

e Data interoperability
(tokenization)

Ingredients




Turning Ingredients into a Recipe

Ingredients

Lessons

Design Principles of ML

Scaling

Proliferation of

Internet-scale Models

|

|

High-capacity
architectures
(attention)

Data interoperability
(tokenization)

Leverage foundation
models (they will get
better)

They can provide
common sense

Use language



https://twitter.com/hausman_k/status/1612509549889744899?s=20&t=5JT21W-bJpEj1LBmUJZ3zg

Turning Ingredients into a Recipe

Ingredients

Lessons

Design Principles of ML
Scaling

Proliferation of

Internet-scale Models

|

|

Offline Robot Learning

l

e High-capacity
architectures
(attention)

e Data interoperability
(tokenization)

Leverage foundation
models (they will get
better)

They can provide
common sense

Use language

e Collect tons of diverse

interesting data

e Don’t care as much

about how the data is
collected




Turning Ingredients into a Recipe

Design Principles of ML Proliferation of
Scaling Internet-scale Models

| | |

. . e Leverage foundation :
e High-capacity models (they will get e Collect tons of diverse

architectures better) interesting data
Lessons (attention) . e Don't care as much
e Data interoperability O UISEEIn [Plevil about how the data is

.. common sense
(tokenization) collected
e Uselanguage

Ingredients Offline Robot Learning

combine large diverse offline datasets with high-capacity architectures by using

Recipe .
language as a universal glue
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Scaling Multi-task Imitation from First Principles

Existing Demonstration Dataset
® O(100k) demos from 13 robots, 17 months, 700 tasks

Limited throughput of new robotic data

® Autonomous collect is costly (engineering) [MT-Opt,
RGB-Stacking]

® Human teleoperation is costly (operations) [BC-Z]

Lesson #3:
Offline Robot
Learning

Models need to be
robust and generalize

ResNet-50 Works Reasonably

®  Still sensitive to training distributions [BC-Z]



https://karolhausman.github.io/mt-opt/
https://www.deepmind.com/blog/stacking-our-way-to-more-general-robots
https://sites.google.com/corp/view/bc-z/home
https://sites.google.com/corp/view/bc-z/home

Scaling Multi-task Imitation from First Principles

Lesson #1:
Design
Models need to be robust and Principles of ML
generalize Scaling

We need to create a new
architecture with
attention and
tokenization

Off-the-shelf models are too slow

® \We need to be able to run vision-based

inference in the real world

Our data is language conditioned
® We need to support multi-modality [SayCan



https://say-can.github.io/

Arm

Instruction Action
' Pick rice chips from top drawer RT-1 Mode Bosa
§ —

and place on counter P
3 Hz

Images FiLM
EfficientNet TokenLearner  Transformer
Action

Gripper rotation, position, closure, terminate

Tokenized input and outputs

Decoder only transformer, sparse categorical entropy objective

Image tokenizer: Pre-trained film efficient net backbone
Token learner for compression/ faster inference



Instruction

{ Pick appe from top drawer and piace on counter }

Images
6 images

-

1x5612

g
300 width x 300 height x 3 channels

(7

ImageNet Pretrained

+ Vision-Language Tokens
9x9x512

Token Learmner
Selects the top 8 tokens

. | Tokenized Input
| NSSNES -00EEE8 )

Positional Encoding

Transformer
x8

¢ .. ~Action

RT-1Design Takeaways

Inference budget: 100ms (3Hz control)
6-image history

TokenLearner subsamples 81image
patches into 8 image patches

Action discretization to 256 bins
Model Size: 35M parameters




Pushing the limit: adding visual and semantic diversity

e RT-1has the best performance compared to baselines in seen/unseen
e RT-1is robust to variations in backgrounds, distractors

100% B RT-1 (ours)

B GATO
BC-Z

78% B BC-ZXL

50%
- I I I I I
0% I

Seen Tasks Unseen Tasks  Distractors  Backgrounds

Success Rate

Tasks




Pushing the limit: change multiple factors of variation

Generalization
Level 3

B Generalization
50% Level 2

B Generalization
Level 1

RT-1 (ours) GATO BC-Z BC-Z XL



http://www.youtube.com/watch?v=UuKAp9a6wMs

Pushing the limit: Training on Diverse Data Distributions

RT-1 data collected on Everyday Robots

Real RT-1 eval
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20%

Success Rate Compared to EDR only
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)]
&°

Real + Sim Data

+64%

2%

Sim Seen Sim Seen Real Tasks
Objects w/ Skills  Objects w/o
Skills

EDR + Kuka Data

+17%

-2%

Bin-picking Eval RT-1 Eval




Scaling with data

e Reducing data size reduces performance and generalization
e Task diversity >> data size

120%
® Seen Tasks
100% o ® Generalization
Decreasing data size
80% Trained On:
(V]
T ® All Tasks
& 60%
4 ° G & 75% Tasks
& @
8 &
3 40%
) "
Decreasing
20% data diversity
(]
0%
0% 20% 40% 60% 80% 100% 120%

% of Data



Agenda

o1

02

03

04

05

06

07

The Ingredients for a Robotics Foundation Model
RT-1

SayCan

Inner Monologue

NL Map Saycan

MOO

What’s next



D
& [slelelelele] l

Wild LLM

appeared?

SayCan

Inner
Monologue

p F_/\' ) DIAL
s 8 0(10"5)

NLMap

demos .

7N

sim2real Code as
bootstrapping Policies
2016 - 2021 2021 - 2022 2022 - 2023
“How do we do end-to-end robot “How do we scale to many tasks with “How can we leverage foundation
learning in the real world?” demonstrations?” models to accelerate robotics?”



Language models for robotics

Problem 1: Our robots can only do a fixed LLM1 You could try using a
number of commands. vacuum cleaner.

We need to get LLMs to speak “robot
language”!

Do you want me to find

LLM2 a cleaner?

LLM3 I'm sorry, | didn't mean
Problem 2: LLMs aren’t grounded in the o spill it

real-world. They can't “see”.

We need to ground LLMs in robotic
affordances!




SayCan: LLMs for robotics and robotics for LLMs

Useful Tasks with LLMs Combined Possible Tasks with Affordances

-6 [ Find an apple ]
-30 Find a coke

Please, put an

apple on the table
-30 Find a sponge

-4 [ Pick up the apple ]

I would: 1.
— -30 Pick up the coke
-5 Place the apple
-30 Place the coke
LLM -10 Go to the table Affordances
-20 Go to the counter

I would: 1. Find an apple, 2.

34




say-can.github.io

- L ﬁ“. -
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http://say-can.github.io
https://docs.google.com/file/d/1aMI4F-fMo_8JQxp0CsaEC-u296hCQvP1/preview

Experiment Overview

84% planning rate

74% execution rate

101 long-horizon instructions

10+ navigation and manipulation skills in a row

Without grounding nearly halves performance

Instruction Family Num Plan Execution
Natural Language Single Primitive | 15 = 100% 100%
Natural Language Nouns 15 67% 47%
Natural Language Verbs 15  100% 93%
Structured Language 15 93% 87%
Embodiment " 64% 55%
Crowd Sourced 15 87% 87%
Long-Horizon 15 73% 47%
Total 101 84% 74%

416. Pick up the water bottle
y / . Go (o the trash can ¥ &
’.” ¥ B 3 14. Pick up the sponge
. . Al Golo the table

t

\
%

4. Put down the apple
5. Find a watel 0f

@F’utdawnthewatgqbwe ktw
Fi fd 1.F

X

9. Find a p
12. Put down the pepsi

13. Find a sponge Pick up the pepsi

Go to the trash can

— 4 '16. Put down the 3

*ser: | left out a coke, apple, and water, can you throw 0" 17.Done jﬁ
em away and then bring me a sponge to wipe the ! g

able? ]




Bal/laSayCan

Robotics performance scales
with better LLMs!

Planning Performance
® FLAN-SayCan @ PALM-SayCan
100%

75%
50%
25%

0%

Proliferation of
Internet-scale Models

|

e Leverage foundation

models (they will get
better)

e They can provide

common sense

e Uselanguage

10 50 100 500

Model Size (B)

37



PaLM-SayCan

Robotics performance scales
with better LLMs!

e Chain-of-thought prompting
e Better prompts

Solves all kinds of queries:

- I'm thirsty

- Bring me two different sodas

- lleft out a coke, apple, and water, can you
throw them away and then bring me a
sponge to wipe the table?

- REEL/IEEMARAG ?

-

Human Input: How would you bring me
a fruit that is not an apple?

Model Output:

Explanation: The user has requested
me to bring a fruit that is not an

apple. The banana is a fruit that is
not an apple, I will bring the user

a banana.

Robot: I would

. find a banana

. pick up the banana
. go to the table

. put down the banana

\

. done.

/U‘I-PUUNH
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Language as connective tissue for robotics

Task

“Bring me a snack”

“Bring me a snack”

World States

“Apple in drawer”
“Orange in drawer”
“Coke in fridge”

“Top drawer open”
“Nothing on table”

y

LLM
Planner

O
4
j_i;lj

Robot States:

“Banana in gripper”

“Near the cabinet”

‘Go t

o

he user”

Policy
T

Actions
a



innermonoloque.qgithub.io

Inner Monologue

e Close the loop further with the scene
e Scene understanding
e And human feedback for free

Human: Bring me a drink from the table = Action:
Robot: go to the table pick up
Scene: | see a coke and lime soda the coke

Robot: What kind of drink would you like?
Human: Something with caffeine

Robot: Pick up coke

Success Detector: False

Robot: Pick up coke

Robot: Bring it to you

Robot: Put down the coke

Robot: Done

Kitchen Mobile
Manipulation (Real)

Object Recognition Success Detection



http://innermonologue.github.io/
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Language as connective tissue for robotics

Task
“Bring me a snack” “Bring me a snack”
World States
“Go to the user”
LLM , ,
Planner Policy Actions
T a

“Banana in gripper”

“Near the cabinet”

Robot States:




N |_ I\/I a p nlmap-saycan.qgithub.io

Queryable, natural language map provides world context to the planner.

“trash can”
| =

“recycle bin”
=

Ilplantll -

“red can” “potted plant” &
“green plant” ==


http://nlmap-saycan.github.io/

“Recycle the coke can”

n u

“coke can”, “recycle bin”

“coke can” found at (x1, y1)
“recycle bin” found at (x2, y2)

”n u

“go to coke can”, “pick up coke

”

can”,

“put down coke can”, .... 1

find the coke can

Scene: coke can, recycle bin
Robot: | should

find the coke can

pick up coke can

go to recycle bin

put down coke can

pick up the coke can

| 0.00
find the recycling bin

‘ 0.00
put down the coke can

0.00

=SB E




Use Foundation Models for Importing Common Sense

“The bottleneck for robotics is high level semantic planning”
- Robotics Professor in 2018

“No 144
- LLMsin 2022

Lesson #2: Leverage || If language is the universal APl of the system, then
Foundation Models foundation models can inject common sense
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Two Axis for Generalization

e Tasks e Objects
Examples: Examples:
Pick up X Pick up the apple core
Move X near Y Place the screws into the box
Open the lid on X Move the coffee near the human
Place X into the Y Open the lid of the large box.



Vision Language Models can zero-shot detect almost any
object.

KShelr 31 curtains 30
desk lamp .29 frra——
Bcomputer monitor .72
p -
drinking glass .15
inder remote control .1 Ipod .59
computer keyboard .60 5
o — le .05
drinkin .
ers 1 - ed apple (4ple 04
‘s’s_
yellow bool (3 Jé:uple 04
~
chair - ¥ JpC computer 06,
22 ~pple
rawers
le .06

(Real detections from OWL-ViT)



Generalizing to any object type




Interface is natural language

Extract objects from phrase and feed them to OWL-VIT, feed detections as input
along with "task embedding.”

Instruction

Encoded Instruction

. (TIT111) Action
Current Image : mode
and Recent History - () base
O , @ | ) 2
= ) am
= ]
] [ ]
s - a
FiLM Efficient Net Token Learner Transformer




Train on enough objects the policy learns generalizable skills

Held out test objects
(unseen during training)

e e

Srany  oarped



Distribution of Objects

We added small amounts of "pick"” skill data for 100 additional, diverse

objects.

RT-1 Data

Bl Pick task

B Other tasks

mmm Selected for "seen" evaluation

Unseen eval

Iy added diverse pick data




Main Results

Pick Other skills
Method Seen objects Unseen objects  Seen objects Unseen objects
RT-1 (our data) [2] 54 25 50 50
RT-1 (original data) 31! 38 171 13
VIMA-like [13] 62 50 50 25
MOO (ours) 92 (i 83 75



\ ‘VZ‘\\W&“
N\ L W

Method Open-World Objects Challenging Textures  New Environments
RT-1 (our data) [2] 17 7 29
VIMA-like [13] 50 7 7
MOO (ours) 67 50 43

TABLE II: Robustness evaluations for novel use cases. MOO is able
to handle new objects, textures, and environments with substantially
greater success than prior methods.



Limitations

Still struggles with objects far
outside training distribution.
Failures often do plausible things
and exhibit retry behavior
Learning new action primitives is
still very hard.




Takeaways

Lesson #2:
Leverage Foundation
Models

Lesson #3:
Offline Robot Learning

for generalization
Import into
When datasets are large enough,
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Turning Ingredients into a Recipe

Design Principles of ML Proliferation of
Scaling Internet-scale Models

| | |

. . e Leverage foundation :
e High-capacity models (they will get e Collect tons of diverse

architectures better) interesting data
Lessons (attention) . e Don't care as much
e Data interoperability O UISEEIn [Plevil about how the data is

.. common sense
(tokenization) collected
e Uselanguage

Ingredients Offline Robot Learning

combine large diverse offline datasets with high-capacity architectures by using

Recipe .
language as a universal glue




combine large diverse offline datasets with high-capacity architectures by using

language as a universal glue

v

Component Method
Skill Learning RT-1
Planning SayCan, Inner Monologue
Low-level Control Code as Policies
Data Augmentation DIAL, ROSIE
Object-centric Representations NLMap, MOO
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Wild LLM
appeared?
@ Inner
SayCan Monologue
BC-0 NLMap
o IL+RL l' DIAL
"—/_—/\' “7< _—/\ 77?
y 0(1075) o o o
demos PaLM-SayCan
scale real Co@g as
operations Policies

2016 - 2021

“How do we do end-to-end robot
learning in the real world?”

2021- 2022

“How do we scale to many tasks with
demonstrations?”

2022 - 2023

“How can we leverage foundation
models to accelerate robotics?”



Open Research Directions

Bottleneck is still on skill learning

Leveraging Bitter Lesson 2.0 is non-trivial

How do we collect diverse and useful data more scalably?
What algorithms are absorbent “data sponges™

Transfer from human embodiment




Thank youl!

say-can.github.io
innermonologue.github.io
robotics-transformer.github.io
robot-moo.qithub.io
nlmap-saycan.github.io



http://say-can.github.io
http://innermonologue.github.io
https://robotics-transformer.github.io/
https://robot-moo.github.io/
https://nlmap-saycan.github.io/

