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Distribution Shifts

Figures from "Wilds: A benchmark of in-the-wild distribution shifts” (2021) 2



Transfer Learning for Adaptation

A reliable way of adapting to distribution shifts: leverage a small amount of labeled 
data from the new target domain. 

Problem setting:
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Backbone pre-trained on 
generic large dataset (optional)

Large dataset from 
relevant source domain

Small dataset from 
target domain



Approaches to Adaptation
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+ Reusable 
-  Inflexible 
-  Susceptible to shortcuts

+ Adaptive 
-  May overfit
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+Adaptive?
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Project and Probe
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Step 1: Project with Source Data

For binary classification: 

• Initialize d classifiers (D x d matrix) 

• Train each classifier with: 

• Cross-entropy loss on source data 

• Orthogonality constraint w.r.t. all previous
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Simple: 15 lines of PyTorch code!
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Step 1: Project with Source Data
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Step 2: Probe with Target Data



Project and Probe (Pro2)

+ Very lightweight: 30,000 experiments in <24 hrs, on CPUs only!

Project: Learn linear projection of pre-trained embeddings onto orthogonal directions 
Probe: Interpolate between projected features w/ a small target dataset
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Pro2 induces a favorable bias-variance tradeoff

A small dataset entails high variance. 

We can reduce variance with a low-dimensional projection.

The projection introduces additional bias, which is low when the most 
important directions are covered (possible when the shift is not too severe).
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Pro2 recovers important & diverse features to reduce bias.



Bias-variance in shifted Gaussian model
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For a small dataset size, bias & variance can be balanced using 
a smaller projection dim if important directions are covered.

ID OOD



Project and Probe (Pro2)

+ Adaptive b/c projection learns diverse (orthogonal) features 
+ Efficient b/c projection learns useful (predictive) features

1) Project: Learn linear projection of pre-trained embeddings onto orthogonal directions 
2) Probe: Interpolate b/w projected features w/ a small amt of target data
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Experiments
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Waterbirds CelebA

Comparisons

Random Projection: Project onto random orthogonal features 
DFR (Kirichenko et al. 2022): standard linear probing on target data 
Teney et al. 2022: minimize alignment of input gradients over pairs of features

Camelyon17 4-way Collages



Pro2 results in higher adaptation acc
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Pro2 bias-variance tradeoff
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Smaller 
shifts

More severe 
shifts



Pro2 bias-variance tradeoff
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Ablations

Orthogonality is important for learning a 
diverse set of features
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Pro2 improves with better pre-
trained feature extractors



Takeaways

Pro2 is a lightweight, sample-efficient framework for adaptation. 
    Project: extract a diverse + predictive feature-space basis 
    Probe: interpolate to adapt to varying target distributions
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Key Insight: The tradeoff between expressivity and inductive bias is critical in      
low data settings. 

• Standard linear probing may not be best for few-shot adaptation. 
• Pro2 better balances this tradeoff by learning diverse predictive features.



Future Work

Interesting future directions, including: 

(1) Extending to other problem settings, such as active learning 

(2) Exploring other methods to determine a good feature-basis for adaptation 

(3) Integrating with other fine-tuning methods to further improve performance 

(4) Select features to use in an unsupervised fashion
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Thank you!

Paper: https://arxiv.org/pdf/2302.05441.pdf 

Emails: asc8@stanford.edu and yoonho@stanford.edu
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