
SOFT MERGING OF EXPERTS
WITH ADAPTIVE ROUTING

Mohammed Muqeeth, Haokun Liu, Colin Raffel

Computation Number of parameters

As models scale, computation becomes prohibitively expensive

Suffer from task interference

∝

TYPICAL NEURAL NETWORKS

Introduce modularity through learned
routing

decouple computation and number of
parameters

specialization to different inputs

MODELS WITH CONDITIONAL COMPUTATION

Learned routing typically underperforms heuristic ones

In machine translation, Kudugunta et al., 2021, heuristic task level routing
outperforms learned routing

In Downstream GLUE, Switch Transformer 3.4B (86.7)< T5 large 740M (87.8)

Roller et al. achieve comparable performance of learned routing with hash routing

ARE MODELS WITH CONDITIONAL COMPUTATION HOLDING
THE PROMISE?

Tags associated with input examples

Task/ Dataset

Domain

Hash

Monolithic (fixed for all examples)

ROUTING VIA HEURISTICS

LEARNED ROUTING VIA GRADIENT ESTIMATORS

 : expert routing block

 : total number of experts

 : activation for the example at current layer

 : activation at same layer or a different layer

 : router probability distribution

 : selected expert

B

N

{f1(. , θ1), f2(. , θ2), …fN(. , θN)}

u x

v

P(v)

i

TOP-K
 : expert routing block

 : total number of experts

 : activation for the example at current layer

 : activation at same layer or a different layer

 : router probability distribution

 : selected expert

B

N

{f1(. , θ1), f2(. , θ2), …fN(. , θN)}

u x

v

P(v)

i

Output of the is

i = argmaxi(P(v))

B P(v)i fi(u, θi)

ST-GUMBEL
 : expert routing block

 : total number of experts

 : activation for the example at current layer

 : activation at same layer or a different layer

 : router probability distribution

 : selected expert

B

N

{f1(. , θ1), f2(. , θ2), …fN(. , θN)}

u x

v

P(v)

i

Output of the is

̂P(v)i =
exp((log(P(v)i) + gi)/τ)

∑N
j=1 exp((log(P(v)i) + gi)/τ)

gi ∼ Gumbel(0,1)

i = argmaxi(̂P(v))

B (1 − sg[̂P(v)i] + ̂P(v)i) fi(u, θi)

REINFORCE
 : expert routing block

 : total number of experts

 : activation for the example at current layer

 : activation at same layer or a different layer

 : router probability distribution

 : selected expert

B

N

{f1(. , θ1), f2(. , θ2), …fN(. , θN)}

u x

v

P(v)

i

Output of the is

J = 𝔼i∼P(v) α log P(v)i (r − b)

+βP(v)log P(v) − γLHuber(r, b)

B fi(u, θi)

Exactly compute

End-to-end differentiable 👍

Computationally expensive 👎

𝔼i∼P(v) fi(u, θi)

ENSEMBLE ROUTING

SMEAR
Computes a merged expert

End-to-end differentiable 👍

Almost same computation as discrete routing 👍

Provided we share expert across the input

f̄(u, ∑
i

P(v)iθi)

EXPERIMENTS

T5-GLUE

8 datasets: RTE, MNLI, QNLI, SST2, CoLA, QQP, MRPC, STSB

T5-Base 1.1

ResNet-DomainNet

6 domains: Clipart, Infograph, Painting, Quickdraw, Real, Sketch

ResNet-18

MULTITASK/MULTIDOMAIN

SETUP
Experts are Adapters

Only trainable

Added after every self-attention and feed-
forward layer in Transformer

Added after each ResNet-Block

NOW, NUMBERS!
Most estimators underperform heuristics

SMEAR outperforms all

On T5-GLUE, 81.6 versus next best
REINFORCE 80.0

On ResNet-DomainNet, 62.0 versus next
best Tag 61.4

NUMBERS!
Monolithic - Parameter matched

A large expert with parameters = *
single expert

T5-GLUE () , ResNet-DomainNet
()

N

80.20.9
60.80.1

Load balancing does not work in our case

LayerNorm to the input of the router &

LayerNorm (any normalization) in the rows of Router

Randomly dropping experts and re-normalizing expert distribution helps in Top- and
SMEAR

Effect of scale when using Adaptive optimizers

K

θt = θt−1 −
α ⋅ mt

vt + ϵ

TRAINING QUIRKS

LIMITATIONS
SMEAR needs experts loaded in the memory

Need weighted all-reduce if experts
reside on different GPUs

Pretraining methods use token-level routing

Downstream tasks use sequence-level
routing

TAKE AWAYS
SMEAR learns routing by being end-to-end
differentiable

Outperforms estimators and heuristics

Has comparable computation cost to
discrete routing

SMEAR is an excellent choice when task boundaries are not clear

 Instruction following datasets

Preference datasets

Experts themselves are reasonable sized

Parameter Efficient Modules match full-model finetuning

Learn to control the capacity of the merged expert

WHAT’S NEXT

THANK YOU! 
QUESTIONS?

Collaborative Model Development:

https://github.com/r-three/git-theta 

http://bit.ly/cccml-community

https://github.com/r-three/git-theta
http://bit.ly/cccml-community

