
SOFT MERGING OF EXPERTS 
WITH ADAPTIVE ROUTING

Mohammed Muqeeth, Haokun Liu, Colin Raffel



Computation  Number of parameters  

As models scale, computation becomes prohibitively expensive  

Suffer from task interference 

∝

TYPICAL NEURAL NETWORKS



Introduce modularity through learned 
routing 

decouple computation and number of 
parameters 

specialization to different inputs

MODELS WITH CONDITIONAL COMPUTATION





Learned routing typically underperforms heuristic ones 

In machine translation, Kudugunta et al., 2021, heuristic task level routing 
outperforms learned routing  

In Downstream GLUE,  Switch Transformer 3.4B  (86.7)< T5 large 740M (87.8) 

Roller et al. achieve comparable performance of learned routing with hash routing  

ARE MODELS WITH CONDITIONAL COMPUTATION HOLDING 
THE PROMISE?



Tags associated with input examples 

Task/ Dataset  

Domain 

Hash  

Monolithic (fixed for all examples)

ROUTING VIA HEURISTICS



LEARNED ROUTING VIA GRADIENT ESTIMATORS

 : expert routing block  

 : total number of experts 

 

 : activation for the example  at current layer 

 : activation at same layer or a different layer 

 : router probability distribution 

 : selected expert 

B

N

{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x

v

P(v)

i



TOP-K
 : expert routing block  

 : total number of experts 

 

 : activation for the example  at current layer 

 : activation at same layer or a different layer 

 : router probability distribution 

 : selected expert 

B

N

{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x

v

P(v)

i

  

Output of the  is   

i = argmaxi(P(v))

B P(v)i fi(u, θi)



ST-GUMBEL
 : expert routing block  

 : total number of experts 

 

 : activation for the example  at current layer 

 : activation at same layer or a different layer 

 : router probability distribution 

 : selected expert 

B

N

{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x

v

P(v)

i

 

 

  

Output of the  is   

̂P(v)i =
exp((log(P(v)i) + gi)/τ)

∑N
j=1 exp((log(P(v)i) + gi)/τ)

gi ∼ Gumbel(0,1)

i = argmaxi( ̂P(v))

B (1 − sg[ ̂P(v)i] + ̂P(v)i) fi(u, θi)



REINFORCE
 : expert routing block  

 : total number of experts 

 

 : activation for the example  at current layer 

 : activation at same layer or a different layer 

 : router probability distribution 

 : selected expert 

B

N

{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x

v

P(v)

i

 

          

Output of the  is   

J = 𝔼i∼P(v) α log P(v)i (r − b)

+βP(v)log P(v) − γLHuber(r, b)

B fi(u, θi)



Exactly compute   

End-to-end differentiable 👍 

Computationally expensive 👎

𝔼i∼P(v) fi(u, θi)

ENSEMBLE ROUTING



SMEAR
Computes a merged expert 

 

End-to-end differentiable 👍  

Almost same computation as discrete routing 👍 

Provided we share expert across the input

f̄(u, ∑
i

P(v)iθi)



EXPERIMENTS



T5-GLUE  

8 datasets: RTE, MNLI, QNLI, SST2, CoLA, QQP, MRPC, STSB 

T5-Base 1.1  

ResNet-DomainNet  

6 domains: Clipart, Infograph, Painting, Quickdraw, Real, Sketch 

ResNet-18

MULTITASK/MULTIDOMAIN



SETUP
Experts are Adapters  

Only trainable  

Added after every self-attention and feed-
forward layer in Transformer 

Added after each ResNet-Block



NOW, NUMBERS!
Most estimators underperform heuristics 

SMEAR outperforms all 

On T5-GLUE, 81.6 versus next best 
REINFORCE 80.0 

On ResNet-DomainNet, 62.0 versus next 
best Tag 61.4



NUMBERS!
Monolithic - Parameter matched  

A large expert with parameters =  * 
single expert 

T5-GLUE ( ) , ResNet-DomainNet 
( )

N

80.20.9
60.80.1







Load balancing does not work in our case  

LayerNorm to the input of the router &  

LayerNorm (any normalization) in the rows of Router   

Randomly dropping experts and re-normalizing expert distribution helps in Top-  and 
SMEAR 

Effect  of scale when using Adaptive optimizers  

K

θt = θt−1 −
α ⋅ mt

vt + ϵ

TRAINING QUIRKS



LIMITATIONS
SMEAR needs experts loaded in the memory 

Need weighted all-reduce if experts 
reside on different GPUs 

Pretraining methods use token-level routing  

Downstream tasks use sequence-level 
routing 



TAKE AWAYS
SMEAR learns routing by being end-to-end 
differentiable  

Outperforms estimators and heuristics  

Has comparable computation cost to 
discrete routing 



SMEAR is an excellent choice when task boundaries are not clear 

 Instruction following datasets  

Preference datasets 

Experts themselves are reasonable sized 

Parameter Efficient Modules match full-model finetuning  

Learn to control the capacity of the merged expert

WHAT’S NEXT



THANK YOU! 
QUESTIONS?

Collaborative Model Development: 
https://github.com/r-three/git-theta 

http://bit.ly/cccml-community 

https://github.com/r-three/git-theta
http://bit.ly/cccml-community

