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Computation  Number of parameters 


As models scale, computation becomes prohibitively expensive 


Suffer from task interference 

∝

TYPICAL NEURAL NETWORKS



Introduce modularity through learned 
routing


decouple computation and number of 
parameters


specialization to different inputs

MODELS WITH CONDITIONAL COMPUTATION





Learned routing typically underperforms heuristic ones


In machine translation, Kudugunta et al., 2021, heuristic task level routing 
outperforms learned routing 


In Downstream GLUE,  Switch Transformer 3.4B  (86.7)< T5 large 740M (87.8)


Roller et al. achieve comparable performance of learned routing with hash routing  

ARE MODELS WITH CONDITIONAL COMPUTATION HOLDING 
THE PROMISE?



Tags associated with input examples


Task/ Dataset 


Domain


Hash 


Monolithic (fixed for all examples)

ROUTING VIA HEURISTICS



LEARNED ROUTING VIA GRADIENT ESTIMATORS

 : expert routing block 


 : total number of experts





 : activation for the example  at current layer


 : activation at same layer or a different layer


 : router probability distribution


 : selected expert
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{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x

v

P(v)
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TOP-K
 : expert routing block 


 : total number of experts





 : activation for the example  at current layer


 : activation at same layer or a different layer


 : router probability distribution


 : selected expert


B
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{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x
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P(v)
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Output of the  is   

i = argmaxi(P(v))

B P(v)i fi(u, θi)



ST-GUMBEL
 : expert routing block 


 : total number of experts





 : activation for the example  at current layer


 : activation at same layer or a different layer


 : router probability distribution


 : selected expert


B

N

{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x

v

P(v)

i







 


Output of the  is   

̂P(v)i =
exp((log(P(v)i) + gi)/τ)

∑N
j=1 exp((log(P(v)i) + gi)/τ)

gi ∼ Gumbel(0,1)

i = argmaxi( ̂P(v))

B (1 − sg[ ̂P(v)i] + ̂P(v)i) fi(u, θi)



REINFORCE
 : expert routing block 


 : total number of experts





 : activation for the example  at current layer


 : activation at same layer or a different layer


 : router probability distribution


 : selected expert


B

N

{f1( . , θ1), f2( . , θ2), …fN( . , θN)}

u x

v

P(v)

i




         


Output of the  is   

J = 𝔼i∼P(v) α log P(v)i (r − b)

+βP(v)log P(v) − γLHuber(r, b)

B fi(u, θi)



Exactly compute  


End-to-end differentiable 👍


Computationally expensive 👎

𝔼i∼P(v) fi(u, θi)

ENSEMBLE ROUTING



SMEAR
Computes a merged expert





End-to-end differentiable 👍 


Almost same computation as discrete routing 👍


Provided we share expert across the input

f̄(u, ∑
i

P(v)iθi)



EXPERIMENTS



T5-GLUE 


8 datasets: RTE, MNLI, QNLI, SST2, CoLA, QQP, MRPC, STSB


T5-Base 1.1 


ResNet-DomainNet 


6 domains: Clipart, Infograph, Painting, Quickdraw, Real, Sketch


ResNet-18

MULTITASK/MULTIDOMAIN



SETUP
Experts are Adapters 


Only trainable 


Added after every self-attention and feed-
forward layer in Transformer


Added after each ResNet-Block



NOW, NUMBERS!
Most estimators underperform heuristics


SMEAR outperforms all


On T5-GLUE, 81.6 versus next best 
REINFORCE 80.0


On ResNet-DomainNet, 62.0 versus next 
best Tag 61.4



NUMBERS!
Monolithic - Parameter matched 


A large expert with parameters =  * 
single expert


T5-GLUE ( ) , ResNet-DomainNet 
( )

N

80.20.9
60.80.1







Load balancing does not work in our case 


LayerNorm to the input of the router & 


LayerNorm (any normalization) in the rows of Router  


Randomly dropping experts and re-normalizing expert distribution helps in Top-  and 
SMEAR


Effect  of scale when using Adaptive optimizers  

K

θt = θt−1 −
α ⋅ mt

vt + ϵ

TRAINING QUIRKS



LIMITATIONS
SMEAR needs experts loaded in the memory


Need weighted all-reduce if experts 
reside on different GPUs


Pretraining methods use token-level routing 


Downstream tasks use sequence-level 
routing 



TAKE AWAYS
SMEAR learns routing by being end-to-end 
differentiable 


Outperforms estimators and heuristics 


Has comparable computation cost to 
discrete routing 



SMEAR is an excellent choice when task boundaries are not clear


 Instruction following datasets 


Preference datasets


Experts themselves are reasonable sized


Parameter Efficient Modules match full-model finetuning 


Learn to control the capacity of the merged expert

WHAT’S NEXT



THANK YOU! 
QUESTIONS?

Collaborative Model Development:

https://github.com/r-three/git-theta 

http://bit.ly/cccml-community


https://github.com/r-three/git-theta
http://bit.ly/cccml-community

