THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mohammed Mugeeth, Haokun Liu, Colin Raffel

SOFT MERGING OF EXPERTS WITH ADAPTIVE ROUTING

TYPICAL NEURAL NETWORKS

- **Computation** \propto Number of parameters
- As models scale, computation becomes prohibitively expensive
- **Suffer from task interference**

MODELS WITH CONDITIONAL COMPUTATION

- decouple computation and number of parameters
- > specialization to different inputs

ARE MODELS WITH CONDITIONAL COMPUTATION HOLDING THE PROMISE?

- > Learned routing typically underperforms heuristic ones
 - In machine translation, Kudugunta et al., 2021, heuristic task level routing outperforms learned routing
 - In Downstream GLUE, Switch Transformer 3.4B (86.7) < T5 large 740M (87.8)
 - Roller et al. achieve comparable performance of learned routing with hash routing

ROUTING VIA HEURISTICS

LEARNED ROUTING VIA GRADIENT ESTIMATORS

- B: expert routing block
- N: total number of experts
- $\{f_1(\ldots,\theta_1), f_2(\ldots,\theta_2), \ldots, f_N(\ldots,\theta_N)\}$
- u : activation for the example x at current layer
- v: activation at same layer or a different layer
- P(v): router probability distribution
- *i* : selected expert

TOP-K **B**: expert routing block N: total number of experts { $f_1(\ldots,\theta_1), f_2(\ldots,\theta_2), \ldots, f_N(\ldots,\theta_N)$ } u : activation for the example x at current layer v: activation at same layer or a different layer P(v): router probability distribution *i* : selected expert

 $i = \operatorname{argmax}_{i}(P(v))$

Output of the B is $P(v)_i f_i(u, \theta_i)$

ST-GUMBEL **B**: expert routing block N: total number of experts

- { $f_1(\ldots,\theta_1), f_2(\ldots,\theta_2), \ldots, f_N(\ldots,\theta_N)$ }
- u : activation for the example x at current layer
- v: activation at same layer or a different layer
- P(v): router probability distribution
- *i* : selected expert

REINFORCE

B: expert routing block

- N: total number of experts
- { $f_1(\ldots,\theta_1), f_2(\ldots,\theta_2), \ldots, f_N(\ldots,\theta_N)$ }
- *u* : activation for the example *x* at current layer
- v: activation at same layer or a different layer
- P(v): router probability distribution
- *i* : selected expert

$$J = \mathbb{E}_{i \sim P(v)} \alpha \log P(v)_i (r - b)$$

 $+\beta P(v)\log P(v) - \gamma L_{Huber}(r,b)$

Output of the *B* is $f_i(u, \theta_i)$

Exactly compute $\mathbb{E}_{i \sim P(v)} f_i(u, \theta_i)$

End-to-end differentiable

Computationally expensive

ENSEMBLE ROUTING

SMEAR

Computes a merged expert

Almost same computation as discrete routing 👍

Provided we share expert across the input

EXPERIMENTS

MULTITASK/MULTIDOMAIN

8 datasets: RTE, MNLI, QNLI, SST2, CoLA, QQP, MRPC, STSB

T5-Base 1.1

ResNet-DomainNet

6 domains: Clipart, Infograph, Painting, Quickdraw, Real, Sketch

SETUP

Experts are Adapters

Added after every self-attention and feedforward layer in Transformer

Added after each ResNet-Block

NOW, NUMBERS!

Most estimators underperform heuristics

On T5-GLUE, 81.6 versus next best REINFORCE 80.0

On ResNet-DomainNet, 62.0 versus next best Tag 61.4

Routing T5-GLUE ResNet-DomainNet $61.4_{0.1}$ Tag $78.0_{1.2}$ $78.5_{1.2}$ Tag+ Hash $66.9_{0.9}$ $52.4_{0.1}$ Monolithic $78.3_{1.2}$ $59.0_{0.1}$ Top-k $78.2_{0.9}$ $60.0_{0.1}$ **ST-Gumbel** $77.9_{0.4}$ $58.5_{0.2}$ REINFORCE $60.0_{0.1}$ $80.0_{0.8}$ **SMEAR 62.0**_{0.1} **81.6**_{1.0} $62.3_{0.1}$ Expert ensemble 81.71.0

NUMBERS!

Monolithic - Parameter matched

A large expert with parameters = N*
single expert

T5-GLUE (80.2 $_{0.9}$), ResNet-DomainNet (60.8 $_{0.1}$)

Routing	T5-GLUE	ResNet-DomainNe
Tag	$78.0_{1.2}$	$61.4_{0.1}$
Tag+	$78.5_{1.2}$	—
Hash	$66.9_{0.9}$	$52.4_{0.1}$
Monolithic	$78.3_{1.2}$	$59.0_{0.1}$
Top-k	$78.2_{0.9}$	$60.0_{0.1}$
ST-Gumbel	$77.9_{0.4}$	$58.5_{0.2}$
REINFORCE	$80.0_{0.8}$	$60.0_{0.1}$
SMEAR	81.6 _{1.0}	62.0 _{0.1}
Expert ensemble	81.71.0	$62.3_{0.1}$

Figure 2. Comparison of inference speed for various routing strategies in T5-GLUE (a) and ResNet-DomainNet (b). SMEAR has comparable speed with that of discrete routing with estimators, whereas computing an ensemble of experts ("Ensemble") is the slowest.

TRAINING QUIRKS

- **Load balancing does not work in our case**
- **LayerNorm to the input of the router &**
- **LayerNorm (any normalization) in the rows of Router**
- \blacktriangleright Randomly dropping experts and re-normalizing expert distribution helps in Top-K and **SMEAR**
- Effect of scale when using Adaptive optim

nizers
$$\theta_t = \theta_{t-1} - \frac{\alpha \cdot m_t}{\sqrt{v_t} + \epsilon}$$

LIMITATIONS

- **SMEAR needs experts loaded in the memory**
 - **Need weighted all-reduce if experts** reside on different GPUs
- Pretraining methods use token-level routing
- - **Downstream tasks use sequence-level** routing

TAKE AWAYS

- SMEAR learns routing by being end-to-end differentiable
- Outperforms estimators and heuristics
- Has comparable computation cost to discrete routing

SMEAR is an excellent choice when task boundaries are not clear

- > Instruction following datasets
- **Preference datasets**
- **Experts themselves are reasonable sized**
 - Parameter Efficient Modules match full-model finetuning
- Learn to control the capacity of the merged expert

THANK YOU! QUESTIONS?

Collaborative Model Development: https://github.com/r-three/git-theta http://bit.ly/cccml-community

