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Algorithmic fairness classification research

Emphasizes 
group-specific accuracy

typically tries to equalize error rates across demographic groups (false positives, 
false negatives, some combination)

disparities in group-specific accuracy
are treated as metrics of (un)fairness (e.g., differences in false positive rates)

theory 
writing proofs about algorithms that make claims about guarantees regarding 
overall accuracy  and algorithmic fairness

Empirics tend to be secondary
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Instead of theory, we focus on empirical methods, provide substantial empirical analysis

We want future fairness researchers to use methods like ours because they give more 
reliable evaluation of

1) models 
2) problems the models are supposed to be predicting  

Typically, researchers cross-validate a very small handful of models (e.g., 5 logistic regressions 
or random forests)

It turns out this gives unreliable estimates of expected error in this domain

We bootstrap: What do empirics change about the study and use of fairness?
Deployed models should abstain from predicting when the predictions they produce are 
arbitrary (This is exactly what our algorithm does)

The real question: How do you know that predictions are arbitrary? 

The answer turns out to be extremely simple
Could do more sophisticated things from the lit on model uncertainty, but in this 
setting (fair classification), we don’t need to 
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Training 10 different logistic regression models on COMPAS using bootstrapping

Looking at the resulting predictions for 2 individuals in the test set

Learning process is 
really confident

All 10 models
predict the same 
outcome for Ind. 1

Learning process is 
effectively random

5 models predict 
commits crime, 
5 models predict 
does not commit 
crime for Ind. 2

(= commits crime)

(= does not commit crime)

An intuition for arbitrariness in empirical fairness
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We turn this picture into a metric (self-consistency) to capture arbitrariness

We quantify and mitigate arbitrariness in fair classification
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B0  = the number of 0 predictions
B1  = the number of 1 predictions

B  = 10 logistic regression models

Ind. 1: B0 = 0, B1 = 10
Ind. 2: B0 = 5, B1 = 5

*This is our empirical approximation definition …
… which is derived from a formal definition …

… which has nice properties because it is 
(further) derived from a formal definition of 
variance



https://afedercooper.info

A metric: Self-consistency

self-consistency*

Defined in terms of # of bootstrap replicates B

B0  = the number of 0 predictions
B1  = the number of 1 predictions

B  = 10 logistic regression models

Ind. 1: B0 = 0, B1 = 10
Ind. 2: B0 = 5, B1 = 5

Interpretation
a value on  [~0.5, 1]



https://afedercooper.info

A metric: Self-consistency

self-consistency*

Defined in terms of # of bootstrap replicates B

B0  = the number of 0 predictions
B1  = the number of 1 predictions

B  = 10 logistic regression models

Ind. 1: B0 = 0, B1 = 10
Ind. 2: B0 = 5, B1 = 5

Interpretation
a value on  [~0.5, 1]



https://afedercooper.info

A metric: Self-consistency

self-consistency*

Defined in terms of # of bootstrap replicates B

B0  = the number of 0 predictions
B1  = the number of 1 predictions

B  = 10 logistic regression models

Ind. 1: B0 = 0, B1 = 10
Ind. 2: B0 = 5, B1 = 5

Interpretation
a value on  [~0.5, 1]



https://afedercooper.info

A metric: Self-consistency

self-consistency*

Defined in terms of # of bootstrap replicates B

B0  = the number of 0 predictions
B1  = the number of 1 predictions

B  = 10 logistic regression models

Ind. 1: B0 = 0, B1 = 10
Ind. 2: B0 = 5, B1 = 5

Interpretation
a value on  [~0.5, 1]

does not depend on dataset labels y (traditional 
fairness metrics do)
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looks approximately like Ind. 2
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Illustrating Self-consistency

Old Adult, random forests, B=101 
(mean +/- STD over 10 trials)

COMPAS, random forests, B=101 
(mean +/- STD over 10 trials)

systematic arbitrariness
(actually happens rarely in practice)
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Predict
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Going to skip over the details but, in short:

● Our algorithm builds an ensemble of B models from bootstrap replicates

● For a particular data instance, the ensemble produces B predictions

● We use these B predictions to compute self-consistency

● A user selects a minimally-acceptable level of self-consistency (anything below this 
chosen level is deemed too arbitrary) 

● If self-consistency for a data instance is below the threshold, the algorithm abstains 
from prediction (otherwise, it predicts the majority vote label)

* We run two versions of this algorithm: 
simple ensembling (ensembles common model types in fair classification) 
super ensembling (ensembles simple ensemble models, i.e., nested ensembles)
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An algorithm: Improving self-consistency

This approach is really simple, and yet it yields
Really effective empirical results

Pretty shocking insights about the current state of fair classification research

We are going to go through one example, looking at
How self-consistency changes

The effects on common error-based fairness metrics (since these are standard 
measurements in the field)
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Can abstain a lot

Super ensembling 
Brings down the curve → has higher 
self-consistency

Abstains less

Both
Improve overall self-consistency by abstaining

COMPAS, logistic regression, B=101 
(mean +/- STD over 10 trials)
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COMPAS, logistic regression, B=101 
(mean +/- STD over 10 trials)

Fairness metrics
Examine false positive rate disparities

Expected error, which is not alone attainable by a single 
model (averages computed over underlying 1010 models)
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COMPAS, logistic regression, B=101 
(mean +/- STD over 10 trials)

Fairness metrics
Examine false positive rate disparities

We yield results that are very close-to-fair (<2% 
disparity in FPR) (and super abstains <5%)

And we haven’t run any algorithmic fairness 
method!
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Summarizing our study

Datasets:
● (South) German Credit
● COMPAS
● Old Adult
● Taiwan Credit
● New Adult (race, sex)

○ Income
○ Public Coverage
○ Employment

● Home Mortgage Disclosure Act (race, ethnicity, sex)
○ NY - 2017
○ TX - 2017 We packaged this because we struggled to find algorithmic unfairness above

Models:
● Logistic regression
● Decision trees
● Random forests
● MLPs
● SVMs

These are the most common fair classification models

Overall, these patterns hold (and more)

We improve self-consistency, attain SoA accuracy, and (in 
almost every case) achieve close-to-fairness … 

… without using a single field-standard theory-backed 
technique that aims to improve fairness
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using ensembles

In nearly every single case: Models are close-to-fair without doing anything to target (un)fairness
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