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Generalist Agents

Image by Stable Diffusion 2.1 (Prompt = “a robot playing video games and a robot doing housework; high quality flat design”)
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General (Pre)training — Generalist Agents for General Task-Solving

(Multi-Task, Goal-Reaching, Instruction-Following)

Structure
Vision View-based SSL — Encoder for feature extraction/FT
Language Sequence Modeling — LLM for prompting/FT

Decision-Making ??? Training — Agent that can do 77?7
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Decision-Making
reach many goals

— Agent that can reach any goal
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General (Pre)training — Generalist Agents for General Task-Solving

(Multi-Task, Goal-Reaching, Instruction-Following)

Structure
Vision View-based SSL — Encoder for feature extraction/FT
Language Sequence Modeling — LLM for prompting/FT
Decision-Making Quasimetric — Agent that can reach any goal

core structure in multi-goal



Agents tor Sequential Decision Making

Control / Sequential decision making = Act at each state at each timestep
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Generalist Goal-Reaching Agents

Control / Sequential decision making = Act at each state at each timestep

Generalist agents can do everything in an environment (e.g., entire house/city)

)'0'\,

Given ANY goal, e.g., ¢

From any starting state s, optimal agent

PO O

should give a “shortest path” s, —

How to make (sequence of) decisions?




Generalist Goal-Reaching Agents
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Learn a model of the world
Plan w.r.t. world model



Generalist Goal-Reaching Agents

Control / Sequential decision making = Act at each state at each timestep

Generalist agents can do everything in an environment (e.g., entire house/city)

Value-Based Agent

PO NN

Goal is W 0

what if we take

&t the action — I

Label each state s with

PO 2N

distance(s,3y/)
l.e.,
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total-cost(s =)

Learn a model of the world Pick action that leads to smaller
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Plan w.r.t. world model distance(next state, )



Generalist Goal-Reaching Agents

Control / Sequential decision making = Act at each state at each timestep

Generalist agents can do everything in an environment (e.g., entire house/city)

Value-Based Agent

+ Easy to optimize, learn from local transitions Goal is 40

+ Easy to add known structure (e.g., +objects)
Label each state s with

+ Multi-Goal | .
: : . distance(s, )
— Abstraction? Learn without reconstruction? o
— Error accumulation PR ;

total-cost(s =)

Learn a model of the world Pick action that leads to smaller

PO SN

Plan w.r.t. world model distance(next state, )
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Generalist Goal-Reaching Agents

Control / Sequential decision making = Act at each state at each timestep

Generalist agents can do everything in an environment (e.g., entire house/city)

Value-Based Agent

+ Easy to optimize, learn from local transitions + Learn *exactly* what is needed to do well
+ Easy to add known structure (e.g., +objects) + Long-range global quantity (distance)
+ Multi-Goal '
— Abstraction? Learn without reconstruction? — Hard to optimize (b/c bootstrapping alg.)
— Error accumulation — Any structure in distance/value functions?
. — Multi-Goal?
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vV learn a of how actions affect the distance/value to ALL goals

+ Learn *exactly* what is needed to do well + Value estimates can be imperfect (can use model)
+ Local training + No bootstrapping alg.

+ Long-range global quantity + Inherently designed for multi-goal

Model-Based Agent Value-Based Agent
+ Easy to optimize, learn from local transitions 5 / + Learn *exactly* what is needed to do well
+ Easy to add known structure (e.g., +objects) rt Long-range global quantity (distance)
+ Multi-Goal

— Abstraction? Learn without reconstruction? — Hard to optimize (b/c bootstrapping alg.)

— Error accumulation — Any structure in distance/value functions?

— In practice still learns value... . — Multi-Goal?

Learn a model of the world Pick action that leads to smaller

PO 2SN

Plan w.r.t. world model distance(next state, )



Generalist Agent via Value-Aware World Models

learn a model of how actions affect the distance/value to ALL goals

Background (X): Model-Based Agents learn a model of how actions affect the full world

what if we take

1@l the action — I '




Generalist Agent via Value-Aware World Models

learn a model of how actions affect the distance/value to ALL goals

Background (X): Model-Based Agents learn a model of how actions affect the full world

latent space

current state

f: encoder

getion,. —
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Generalist Agent via Value-Aware World Models

learn a model of how actions affect the distance/value to ALL goals

X predict full state predict distance to goal — what planning really needs

latent space predicted f(next state)
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Generalist Agent via Value-Aware World Models

learn a model of how actions affect the distance/value to ALL goals

X predict full state predict distance to goal — what planning really needs

value-aware” latent space oredicted f(next state)

l decode
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Generalist Agent via Value-Aware World Models

learn a model of how actions affect the distance/value to ALL goals

X predict full state predict distance to goal — what planning really needs
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Generalist Agent via Value-Aware World Models

learn a model of how actions affect the distance/value to ALL goals

X predict full state predict distance to goal — what planning really needs

“value-aware” latent space--i- latent distance |
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| |
1 captured by a structure called
quasimetrics
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Generalist Agent via Value-Aware World Models

learn a model of how actions affect the distance/value to ALL goals

X predict full state predict distance to goal — what planning really needs

Quasimetric value embedding || Iatet distance |

p — i

| true distance/value |
1 captured by a structure called
quasimetrics
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Generalist Agent via Quasimetric World Models

learn a model of how actions affect the distance/value to ALL goals

X predict full state predict distance to goal — what planning really needs

Quasimetric value embedding (where latent distance = true distance)

current state

e / Zo = predicted f(next state)

!
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Generalist Agent via Quasimetric World Models

learn a model of how actions affect the distance/value to ALL goals

X predict full state predict distance to goal — what planning really needs

Quasimetric value embedding (where latent distance = true distance)

Zo = predicted f(next state)

oredicted dist(next state, goal)

IS dlatent(227 Zgoal)

T : world model



Generalist Agent via Quasimetric World Models

learn a model of how actions affect the distance/value to ALL goals

Quasimetric value embedding |is all you need

1. get a| Quasimetric value embedding
where latent distance = true distance

2. train a latent world model in it
3. agent plan/trained w.r.t. world model

4. profit!



Motivation ........................................................................................................ Generalist (GoaI_ReaChing) Agents
via a quasimetric world models
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Quasimetrics With Neural Nets ............................................................... Quasimetric Embedding

Learn Quasimetric World Models for Agents -~ Quasimetric Reinforcement Learning
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Structures for Generalist Agents



Value Function Is a “"Distance”

Definition (value function is a “"distance” between states)

— V*(s; goal = s;) measures closeness of s, — s, by optimal total cost to go s, — ;.

V* is known as the optimal goal-conditioned value function in RL.

» Shortest-path distance in the finite case



Value Function Is a “"Distance”

Definition (value function is a “"distance” between states)

— V*(s; goal = s;) measures closeness of s, — s, by optimal total cost to go s, — ;.

V* is known as the optimal goal-conditioned value function in RL.

» Shortest-path distance in the finite case

o V*(sy; goal = s)) is the cost of reaching s; from s, from an optimal agent

o V*is what a generalist decision-making agent should (approx.) learn
(value-based agents, model-based agent, “value-aware” latent space)



Value Function Is a "Distance”

Definition (value function is a “"distance” between states)

— V*(sy; goal = 5;) measures closeness of s, — s; by optimal total cost to go sy — ;.

V* is known as the optimal goal-conditioned value function in RL.

o Asymmetry: V*(sy; 51) # V*(s;; 59) in general. So not actually a distance




Optimality = Triangle Inequality

— V*#(s, g) always satisfies triangle inequality:

Vi35 — Vg 50)>

Why? Because optimal plan from A to C

could be for A-B—C, if that's the best,
otherwise is better.
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Value Function |Is a Quasimetric

Definition (value function —V* € quasimetrics on states)

— V*(s,; goal = s5,) measures closeness of s, — s; by optimal total cost to go s, — ;.

V* is known as the optimal goal-conditioned value function in RL.

o Asymmetry: V¥(sy; 5,) # V*(sy; 59) in general. So not actually a distance
» Optimal cost = Triangle inequality

e —V*is almost a distance between states, except for the symmetry constraint

e ... such relaxed metrics are called quasimetrics




Value Functions = Quasimetrics

e A generalist decision-making agent should learn V*

e For any environment, —V* and d € quasimetrics on states

® Beverse also hold. ..

o [ICML 23, Thm. 1; Value-Quasimetric Equivalence]

{all quasimetrics on states} = {—V* tor all MDPs}

Proof by construction.

 Quasimetrics is the exact and only structure for V*

e To learn V*, quasimetrics is the exact function class with correct inductive bias
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(Deep) Learning Quasimetrics



L earning Quasimetrics

Symmetrical Relation <« Metric Embeddings
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L earning Quasimetrics

Symmetrical Relation « Metric Embeddings

Asymmetrical Relation < Just a regular neural network fy\(x, y)?

* Indeed, many goal-reaching RL papers use this!

. Bt ..

e [ICLR 22, Thm. 4.6 & Experiments]

Such NN formulations can arbitrarily badly violate quasimetric properties.

Proof by construction + NN as NTK dot-product kernel + extremal combinatorics (probabilistic method).




L earning Quasimetrics

Symmetrical Relation <« Metric Embeddings

Asymmetrica\ Relation <« Quasimetric Embeddings [ICLR 22, NeurlPS 22 workshop]



Quasimetric Embeddings

Components of A Quasimetric Embedding on X (e.g., states, images)

s ad
2. dlatent: L :

d

x R4

generic unconstrained neural network encoder

— [0,00] latent space quasimetric function

do(z,y) = d|atent(f9( ), fo(y)) (Quasimetric Embedding)

\
Jo(X) / Jo(¥) \




Aside: How to choose latent quasimetric dj o

An Inductive Bias for Distances: Neural Nets that Respect the Triangle Inequality

Silviu Pitis, Harris Chan, Kiarash Jamali, Jimmy Ba, ICLR 2020

On the Learning and Learnability of Quasimetrics

Tongzhou Wang, Phillip Isola, ICLR 2022

Metric Residual Networks tfor Sample Efficient Goal-Conditioned Reinforcement Learning

Bo Liu, Yihao Feng, Qiang Liu, Peter Stone, arXiv 2022

Improved Representation of Asymmetrical Distances with Interval Quasimetric Embeddings

Tongzhou Wang, Phillip Isola, NeurReps Workshop 2022



Interval Quasimetric Embeddings

diqe (fo (@), fo (1))
/T

U U

d@(ﬂ?,y) :(f9(37>7 f@(?J)) /fg(x) /]fg()})

detail skipped in this talk

Properties:
* (Quasimetric constraints) All functions in this family are quasimetrics

* (Universal approximation) All quasimetrics are close to one in this family

UA proof by approximating any guasimetric as cvx combination of many binary ones.




H quasimetric-learning / torch-quasimetric ' Public @®Unwatch 3 v % Fork 0~ Starred 20

<> Code () Issues 19 Pullrequests (*) Actions Projects [0 Wiki () Security |~ Insights 33 Settings
¥ master ~ ¥ 1branch © 0tags Go to file Add file ¥ <> Code ~ About &3
PyTorch Package For Quasimetric
’ ssnl update_bib f£13149 last week Y 3 commits Learning
B torchgmet Add code 5 months ago [ Readme
58 BSD-3-Clause license
Y .gitignore Add code 5 months ago
v 20 stars
' LICENSE Add code 5 months ago ® 3 watching
Y README.md update_bib last week % 0 forks
R t it
Y setup.py Add code 5 months ago eport repository
‘= README.md 4 Releases

No releases published

torchqmet : PyTorch Package for Quasimetric Learning Create a new release

Tongzhou Wang Packages
This repository provides a PyTorch package for quasimetric learning --- Learning a quasimetric function from No packages published
data. Publish your first package
It implements many recent quasimetric learning methods (in reverse chronological order):

Languages

e [1] Interval Quasimetric Embeddings (IQEs) (paper) (website)
Wang & Isola. NeurlPS 2022 NeurReps Workshop Proceedings Track.

e [2] Metric Residual Networks (MRNS) (paper)
Liu et al. arXiv 2022.

L1 | J
® C++ 68.1% ® Python 16.2%
® Cuda 15.7%

https://github.com/quasimetric-learning/torch-quasimetric
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Decision-Making via Quasimetrics

Image by Stable Dittusion 2.1 (Prompt = "a robot factory with many complex conveyor belts; high quality flat design”)



Decision-Making V* € Quasimetrics

Quasimetric Embedding for Modeling
Quasimetrics




Generalist Agent via Quasimetric World Models

learn a model of how actions affect the distance/value to ALL goals

Quasimetric value embedding |is all you need

1. get a| Quasimetric value embedding
where latent distance = true distance

2. train a latent world model in it
3. agent plan/trained w.r.t. world model

4. profit!



Generalist Agent via Quasimetric World Models

T —

learn a model of how actions affect the distance/value to ALL goals

Quasimetric value embedding |is all you need

1. get a Quasimetric Embedding that models V* for
all (state, goal) pairs

2. train a latent world model in it
3. agent plan/trained w.r.t. world model

4. profit!



| earn a Quasimetric Value Embedding V*

* Quasimetric Embedding to parametrize V( -, goal = - ) in existing RL algs. (e.g., DDPG)
[ICLR 22, NeurlPS 22 workshop, papers by others at Austin & Toronto]

X straightforward, but doesn’t always work well



| earn a Quasimetric Value Embedding V*

* Quasimetric Embedding to parametrize V( -, goal = - ) in existing RL algs. (e.g., DDPG)
[ICLR 22, NeurlPS 22 workshop, papers by others at Austin & Toronto]

X straightforward, but doesn’t always work well

e Existing RL algorithms

& need accurate representation of intermediate results € Quasimetrics

—> convergence fail = V* estimates may not improve = bad-quality agents
[Sutton & Barto §11.5; Xie and Jiang 2020; Xiao et al. 2022]

@& many optimization issues b/c bootstrapping
[Fujimoto 2022; Lyle 2022]



| earn a Quasimetric Value Embedding V*

* Quasimetric Embedding to parametrize V( -, goal = - ) in existing RL algs. (e.g., DDPG)
[ICLR 22, NeurlPS 22 workshop, papers by others at Austin & Toronto]

X straightforward, but doesn’t always work well

e Existing RL algorithms

@& need accurate representation of intermediate results & Quasimetrics

—> convergence fail = V* estimates may not improve = bad-quality agents
[Sutton & Barto §11.5; Xie and Jiang 2020; Xiao et al. 2022]

@& many optimization issues b/c bootstrapping
[Fujimoto 2022; Lyle 2022]

 New algorithm for learning V* as a quasimetric embedding?



Decision-Making wants V*

Quasimetric Embedding parametrizes V*

RL Algorithm Designed for Quasimetrics
learns V*




Generalist (Goal-Reaching) Agents Quasimetrics Quasimetric Embedding Quasimetric Reinforcement Learning
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Quasimetric RL (QRL)

Image by Stable Dittusion 2.1 (Prompt = "a robot moving a heavy box that is connected by chains to other boxes; high quality flat design”)



How To Learn Optimal V* € Quasimetrics

* Q: Two objects connected by multiple chains. How to find length of the shortest chain
connecting them?
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2. Each link of chains has fixed length unaftected by our actions
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e A: Pull them apart. Then measure!
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1. Triangle inequality of our physical Euclidean space

2. Each link of chains has fixed length unaftected by our actions

e QRL: Do the same with a quasimetric embedding that can approx. any environment!
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* Q: Two objects connected by multiple chains. How to find length of the shortest chain

connecting them?

e A: Pull them apart. Then measure!

Optimize over all (state, goal)
e This relies on

1. Triangle inequality of our physical Euclidean space

2. Each link of chains has fixed length unaftected by our actions

e QRL: Do the same with a quasimetric embedding that can approx. any environment!
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How To Learn Optimal V* € Quasimetrics

* Q: Two objects connected by multiple chains. How to find length of the shortest chain

connecting them?

e A: Pull them apart. Then measure!

Optimize over all (state, goal)
e This relies on

1. Triangle inequality of our physical Euclidean space

“.... Always satisfied via quasimetric emb.
2. Each link of chains has fixed length unaftected by our actions

... Enslire as a constraint

e QRL: Do the same with a quasimetric embedding that can approx. any environment!
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Sgoal ™~ Pgoal; (random goal)
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Quasimetric RL = V* Quasimetric Value Embedding

Given ways to sample (e.g., from a dataset / replay buffer)

(5@ 5 COBE) =~ Drontion (transitions)
S P (random state)
Sgoal ™~ Pgoal; (random goal)

Quasimetric RL (QRL) optimizes a Quasimetric emb. d, as (negated) value function:

max Hsope do(s,9)] (maximize over all pairs)
g~ Pgoal
ol oy relulde(s, s ) — cost)?] < €*  (not overestimate local cost)
5
e > 0 small

[Thms. 2 & 3]  With sufficient data & model capacity, QRL recovers V*.

Proof by (1) E[d] > C = d recovers V* with high prob. (2) constructing E[d,] = C




QRL on Discrete Mountain Car

State: [position, velocity],
discretized into 160 x 160 grid.

Action: Discrete {-1, O, 1}.
Horizontal acceleration.

Dataset: offline trajectory
dataset w/ random actor.




QRL Recovers V*on Discrete MountainCar

Ground Truth QRL objective Q-Learning Conservative Contrastive RL
Q-Learning

Contrastive RL ,
+ Quasimetric Q-Learning + Quasimetric

il w

(dynamics) with £5 metric dg

Distance to
Top of Hill

Distance to
Some State

Distance to
Another State




From V* to Quasimetric World Model and Policy

(Assume Deterministic Dynamics)

o A learned latent transition 7 jointly trained with value function d, w.r.t.

[ftransition (57 a, 8,) = dlatent (T(237 CL), Zs’)2 + dlatent(zs’ ; T(Zsa a))Q

Value-Aware Model Training
Optimizes quasimetric distance (value)

NOT reconstructiorn
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From V* to Quasimetric World Model and Policy

(Assume Deterministic Dynamics)

o A learned latent transition 7 jointly trained with value function d, w.r.t.

[ftransition (57 a, 8,) = dlatent (T(Zsa CL), Zs’)2 + dlatent(zs’ ; T(Zsa a))Q

Value-Aware Model Training
Optimizes quasimetric distance (value)

NOT reconstriietion

Local loss (on transitions) + Quasimetric = Error guarantee on global pairs

o Optimize policy via Quasimetric World Model



What Makes QRL Special?

Value-Based RL
(e.g., 1QL, MSG, SAC, CQLl)

Stochastic
Dynamics

Quasimetric
structure

Quasimetric + Value-Based RL

RL

Contrastive RL

RL via Supervised/Traj. Learning
(e.g., DT, GCBC, Diffuser)



Benchmarking QRL (Oftline)

e Offline RL. Maze2D: Guide a ball through a maze toward target location.

controlled ball

Y,
~
«
-
S
e
S

target location




Benchmarking QRL (Oftline

e Offline RL. Maze2D: Guide a ball through a maze toward target location.

Ensemble Bl Trajectory
Q-Learning Y Modelling
. . MSG MSG + HER  MPPI with . Diffuser with
Environment ~ QRL  Contrastive RL 4 iiic'— 64) (#eritic = 64) GT Dynamics Diffuser Handcoded Controller
large 185.26 +2846  81.65 +43.79 159.30 +49.40 59.26 +46.70 5.1 7.98 + 154 128.13 + 2.59
. medium 148.48 : 46.75 10.11 + 099 57.00 +17.20 7577 + 9.02 10.2 048 + 221 127.64 + 147
Single-Goal 4740237  95.11:4623 1011022630  55.64 +3182 33.2 44.03 + 225 113.91 & 327
Average 127.05 62.29 105.80 63.56 16.17 20.50 123.23
large 199.19 + 407 172.64 + 513 — 44.57 +2530 8 13.09 + 1.00 146.94 + 250
medium 161.91 : 810 137.01 + 6.26 — 99.76 + 983 15.4 19.21 + 3.6 119.97 + 122
Multi-Goal
umaze 134.11 +1256 142.43 +11.99 — 27.90 +10.39 41.2 56.22 + 3.90 128.53 + 1.00
Average 165.07 150.69 — 57.41 21.53 29.51 131.81




Benchmarking QRL (Oftline

e Offline RL. Maze2D: Guide a ball through a maze toward target location.

+ ORIl Vr + QRL V*
Ensemble o) /_\ Trajectory
Q-Learning Y Modelling
. | MSG MSG + HER MPPIwith MPPIwith .. Diffuser with Diffuser with
Environment ~ QRL  Contrastive RL 4 riiic'— 64) (#eritic = 64) GT Dynamics QRL Value DiUSEr  ORY Value Guidance Handcoded Controller
large 185.26 +2846  81.65 +43.79 159.30 +49.40 59.26 +46.70 5.1 4,67+ 531 7.98 + 154 11.33 + 148 128.13 + 259
. medium 148.48 + 46.75 10.11 + 0.99 57.00 +17.20 75.77 + 9.02 10.2 60.89 +4038 9.48 + 221 10.52 + 3.26 127.64 + 147
Single-Goal 4740 +2372  95.11 54623 1011052630  55.64 +31.8 33.2 4588+ 03 44.03 + 225 42.19 & 423 113.91 & 327
Average 127.05 62.29 105.80 63.56 16.17 37.15 20.50 21.35 123.23
large 199.19 + 407 172.64 + 513 — 44.57 +2530 8 54.04 + 747 13.09 + 1.00 21.78 + 2.86 146.94 + 250
. medium 161.91 + 810 137.01 + 6.26 — 09.76 + 983 154 71.24 + 669 19.21 + 356 33.68 + 282 119.97 + 122
Mula-Goal 06 134.11 £ 1256 142.43 1199 _ 27.90 1039 412 8472+ 760 5622+ 390 69.49 + 385 128.53 + 100
Average 165.07 150.69 _ 57.41 21.53 70.00 29.51 41.65 131.81




Benchmarking QRL (Online)

* Online RL. GCRL: Control a robot to perform tasks, e.g., pushing a block.

* More complex environments. Continuous actions.




Benchmarking QRL (Online)

* Online RL. GCRL: Control a robot to perform tasks, e.g., pushing a block.

* More complex environments. Continuous actions.

FetchReach - State FetchReach - Image FetchPush - State FetchPush - Image FetchSlide - State
1.0 1 = S . 1.0 A 1.0 - 1.0 A
o 0.87 [ 0.8 1 0.8 1 0.8 -
e
© |
o 0.6 - / 0.6 - 0.6 - 0.6
wn
A |
3 0.4 ~ 0.4 A 0.4 - 0.4 A
O
5 /} 'N‘ﬂ 0.2
0.2 0.2 0.2 f / A\ adadme AR | 21
| A VTR ‘,,,A,‘}AM{;M*, o oty
0.0 ~ 0.0 + 0.0 1 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps  1€6 Environment Steps  1€6 Environment Steps 1€6 Environment Steps 1€6 Environment Steps  1€6
, . . Goal-Conditioned DDPG + HER + Quasimetric (MRN) DDPG + HER + Quasimetric (IQE)
— QuasimetricRL ~ —— Contrastive RL  —— pgahavior Cloning (GcBc) — DPDPG +HER | = (Method by Liu et al. (2022)) ~ (Method by Liu et al. (2022))

Continuous actions
Quasimetric with TD fails




What's Next?

Aspects of QRL. QRL is a representation learning method (encoder), and
learns a world model (latent transition). Analyses these aspects!

Multi-Environment QRL
Quasimetrics in RL. Quasimetric-aware actor/planner? Exploration?
Exploration for structure learning

RL algorithms designed for quasimetric/other structures

Figure by Stable Diffusion 2.1 (Prompt = “a robot contemplating the truth of lite. flat design.”)



Papers This Talk

Building Quasimetric Embeddings: Desiderata, Constructions, Analyses
[ICLR 22; NeurReps 22]

Evaluating Quasimetric Embeddings on Learning General Quasimetric Spaces
[ICLR 22; NeurReps 22]

Details on World Model (and thus Q-function) Training [ICML 23]
Differences with Contrastive Approaches [ICML 23]

Improved Learning Dynamics Over Regular Value-based Learning
[ICML 23]




Thank You!

 On the Learning and Learnability of Quasimetrics
Tongzhou Wang, Phillip Isola. ICLR 2022

* Improved Representation of Asymmetrical Distances with Interval Quasimetric Embeddings
Tongzhou Wang, Phillip Isola. NeurlPS 2022 NeurReps Workshop

e Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning
ongzhou Wang, Antonio Torralba, Phillip Isola, Amy Zhang. ICML 2023
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