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The Primacy Bias Phenomenon

e A tendency to rely excessively on early
experiences that damages the rest of the 800 = — SAC with heavy priming
learning process SAC

e An illustration: too many updates might
unrecoverably impact the agent
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Nikishin*, Schwarzer*, D'Oro* et al., 2022 “The Primacy Bias in Deep Reinforcement Learning”



Resets Alleviate the Primacy Bias

e Re-initialize last layers of a network while
keeping the replay buffer

e Resetting gives algorithmic-comparable
improvements across domains
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What Resets are Helping with?

e FEvidence that networks in RL lose plasticity
[Dohare 2021]

e Resets restore the plasticity

e The post-reset policy is random -> can't 400
attribute success to addressing plasticity
only, an exploration confounder
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Dohare et al., 2021 “Continual Backprop: Stochastic Gradient Descent with Persistent Randomness”



Challenges with Plasticity

e Plasticity = ability to learn

e The definition is broad. Existing proxies like
o  Weight Norm
o Feature Rank [Kumar 2021, Lyle 2022]
o Dead Units

are incomplete [Gulcehre 2022]

Kumar*, Agarwal*, et al.,, 2021 “Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning”

Lyle et al.,, 2022 “Understanding and Preventing Capacity Loss in Reinforcement Learning”

Gulcehre et al., 2022 “An Empirical Study of Implicit Regularization in Deep Offline RL”
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Main Points

A Diagnostic Tool

How to disentangle plasticity
loss from the rest of RL
complexities

Dynamic plasticity addition

A way to save computations in
large-scale RL
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Example

Space invaders
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Example
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Plasticity Injection
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Plasticity Injection

Take a network at, say, 50M steps

ho f(213)
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Plasticity Injection

Take a network at, say, 50M steps
Create 2 copies of a new network
with randomly initialized parameters

ho f(213)
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Plasticity Injection

e Take a network at, say, 50M steps

e Create 2 copies of a new network
with randomly initialized parameters

e Add and subtract the outputs
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Plasticity Injection

e Create 2 copies of a new network

with randomly initialized parameters e D — e
e Add and subtract the outputs

e F[reezetermsland3

e Take a network at, say, 50M steps h@ (CB) _|_ he,$(m) — h@’ ({1})
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Plasticity Injection

e Take a network at, say, 50M steps

e Create 2 copies of a new network
with randomly initialized parameters

e Add and subtract the outputs

e Freezetermsland3

e Share the encoder to transfer
representations
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Plasticity Injection
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Back to the Example

Space invaders
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Generality of the Finding
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Negative Examples

Assault
|
- 3000
5
€ 2000 :
Q
3 I
2
21000 I
! I
0 |
0 50 100 150

Environment frames (millions)

200

o



Negative Examples
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Negative Examples
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Extra Plasticity under Larger Plasticity Loss

e |earning rates, replay ratio, and network size
control the plasticity loss pace

e Improvements from the injection grow with the
amount of plasticity loss
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Discussion

e Clean demo of the phenomenon in deep RL

e A diagnostic tool reveals non-uniform effects
across games

e Additional plasticity addresses plasticity loss
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Discussion

e Clean demo of the phenomenon in deep RL

e A diagnostic tool reveals non-uniform effects
across games

e Additional plasticity addresses plasticity loss

e “Can’'t we just use a bigger net?”
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Large-Scale RL is Often Expensive

e Increased value of saving
computations [Agarwal 2022]

Outcome Prediction

Vinyals et al., 2022 “Grandmaster level in StarCraft Il using multi-agent reinforcement learning” 0!

Agarwal et al, 2022 “Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress”



Large-Scale RL is Often Expensive

e Increased value of saving
computations [Agarwal 2022]

e Do we need all plasticity from
the beginning?

e What if we lose plasticity but

Outcome Prediction

B—— ) Raw Observations Neural Network Activations

want to keep learning? R
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Vinyals et al., 2022 “Grandmaster level in StarCraft Il using multi-agent reinforcement learning”

Agarwal et al, 2022 “Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress”



Injection vs Bigger Nets

e Plasticity injection @ 50M




Injection vs Bigger Nets

e Plasticity injection @ 50M
e Baseline: larger net
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Injection vs Bigger Nets

e Extra plasticity might be

unnecessary from the start g 1.9

e Injection saves compute resources &
o
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Injection as a Mechanism to Keep Learning

e Shrink-and-Perturb [Ash 2020]: multiply
weights by S, add noise with scale P.
o Best hparams:S=1P =0.01
e Resets
o 4M buffer is too small in Atari 200M
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Ash and Adams, 2020 “On Warm-Starting Neural Network Training”
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Ablations

Multiple times

Injection iteration

Without the 3rd term

Unfrozen original network

Adaptive criterion for injecting

Versions without encoder sharing
Interventions on weights vs optimizer state
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Preventing plasticity loss in the first place

e The need to understand the plasticity loss
causes

e Call for rethinking the deep learning
foundations of deep RL
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Summary

A diagnostic tool

If plasticity injection improves
the learning progress, you are
experiencing plasticity loss

Dynamic plasticity addition

Extra plasticity from the start
might be unnecessary and
costly; injection saves
computations and allows
keeping training
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