DeepMind

Deep RL with Plasticity Injection

Junhyuk Oh

Georg Ostrovski

Clare Lyle

Razvan Pascanu

Will Dabney

André Barreto

Evgenii Nikishin Sep 15, 2023

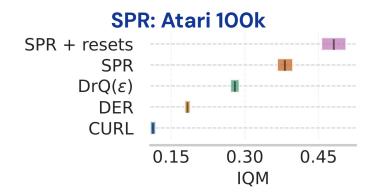
The Primacy Bias Phenomenon

- A tendency to rely excessively on early experiences that damages the rest of the learning process
- An illustration: too many updates might unrecoverably impact the agent



Resets Alleviate the Primacy Bias

- Re-initialize last layers of a network while keeping the replay buffer
- Resetting gives algorithmic-comparable improvements across domains



SAC: DMC dense

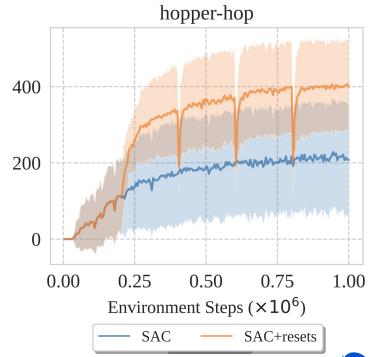
Resets	IQM
Yes No	656 (549, 753) 501 (389, 609)

DrQ: DMC pixels

Resets	IQM
Yes No	762 (704, 815) 569 (475, 662)

What Resets are Helping with?

- Evidence that networks in RL lose plasticity
 [Dohare 2021]
- Resets restore the plasticity
- The post-reset policy is random -> can't attribute success to addressing plasticity only, an exploration confounder



Challenges with Plasticity

- Plasticity = ability to learn
- The definition is broad. Existing proxies like
 - Weight Norm
 - Feature Rank [Kumar 2021, Lyle 2022]
 - Dead Units

are incomplete [Gulcehre 2022]

Main Points

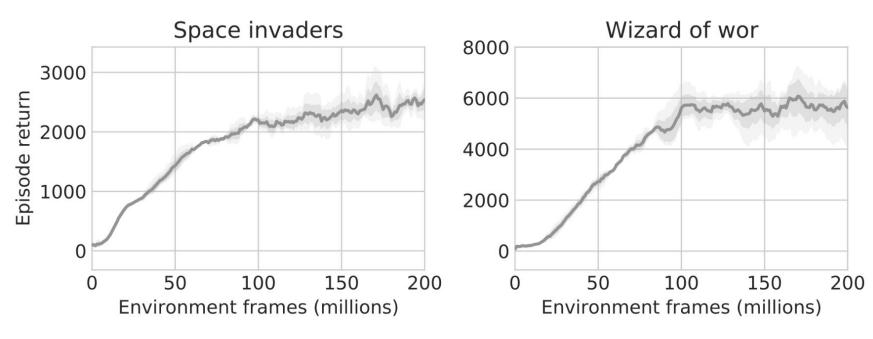
A Diagnostic Tool

How to disentangle plasticity loss from the rest of RL complexities

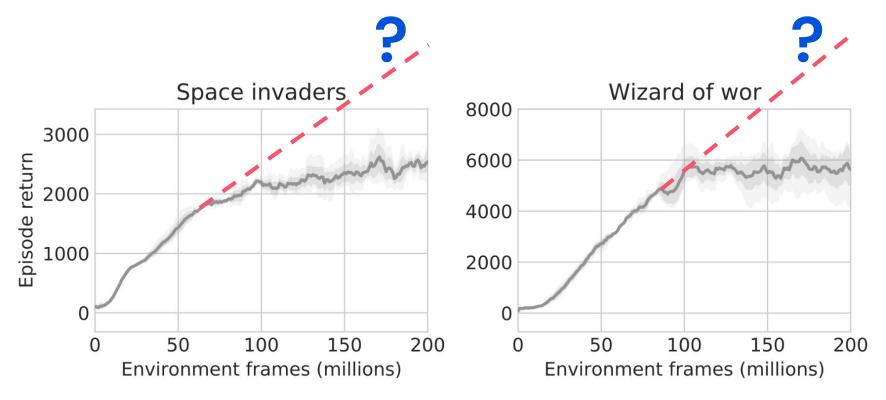
Dynamic plasticity addition

A way to save computations in large-scale RL

Example



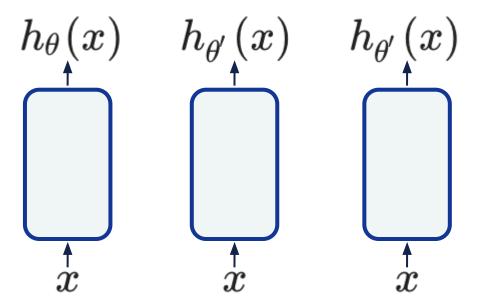
Example



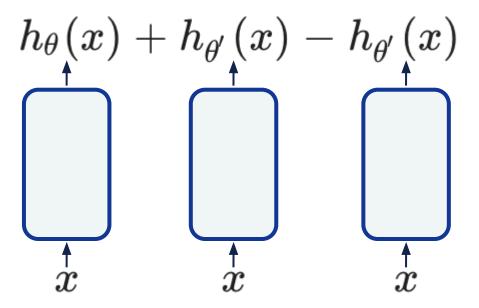
Take a network at, say, 50M steps



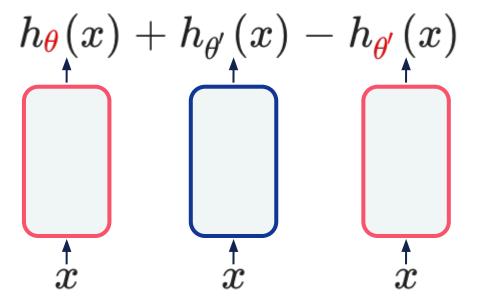
- Take a network at, say, 50M steps
- Create 2 copies of a new network with randomly initialized parameters



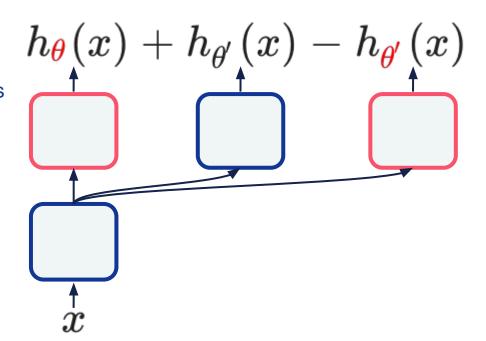
- Take a network at, say, 50M steps
- Create 2 copies of a new network with randomly initialized parameters
- Add and subtract the outputs

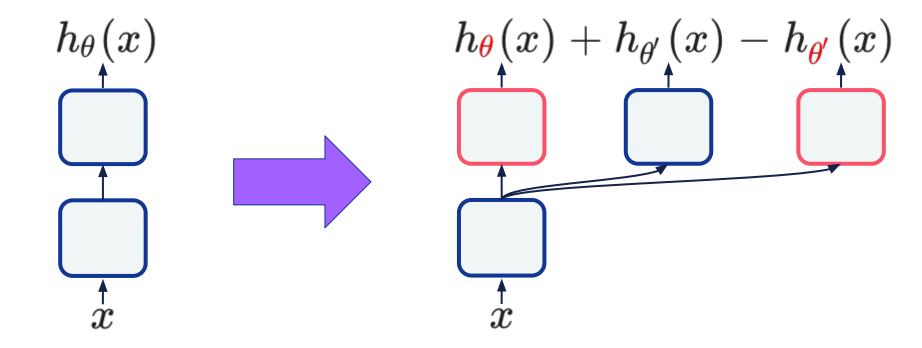


- Take a network at, say, 50M steps
- Create 2 copies of a new network with randomly initialized parameters
- Add and subtract the outputs
- Freeze terms 1 and 3

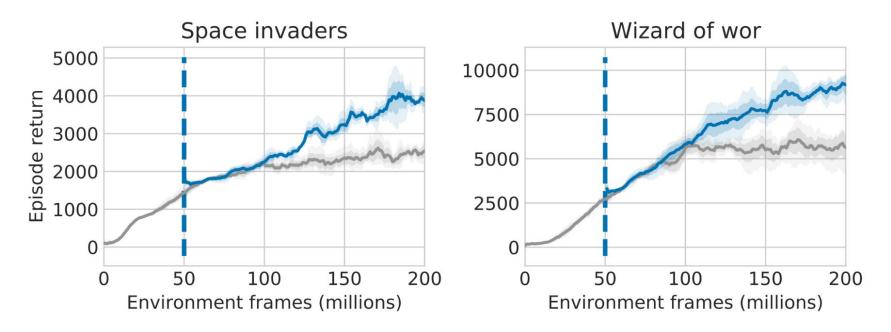


- Take a network at, say, 50M steps
- Create 2 copies of a new network with randomly initialized parameters
- Add and subtract the outputs
- Freeze terms 1 and 3
- Share the encoder to transfer representations

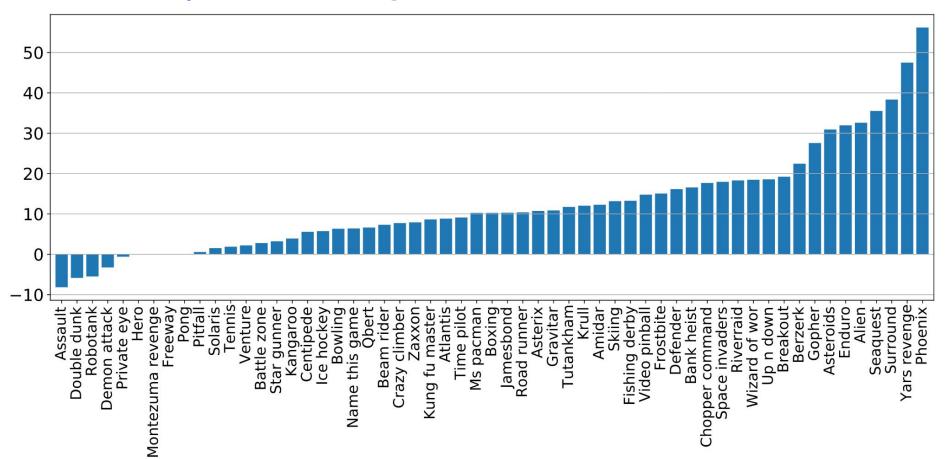




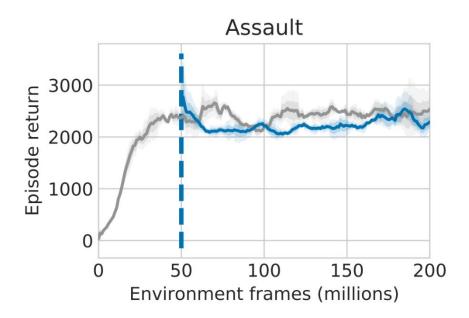
Back to the Example



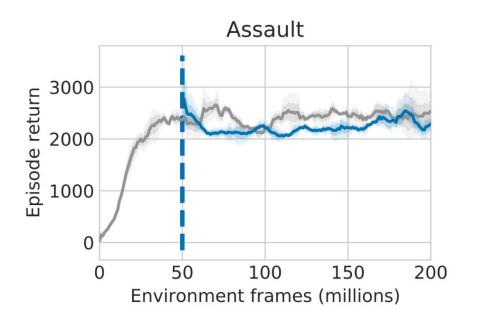
Generality of the Finding

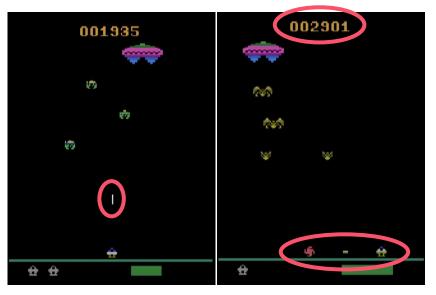


Negative Examples

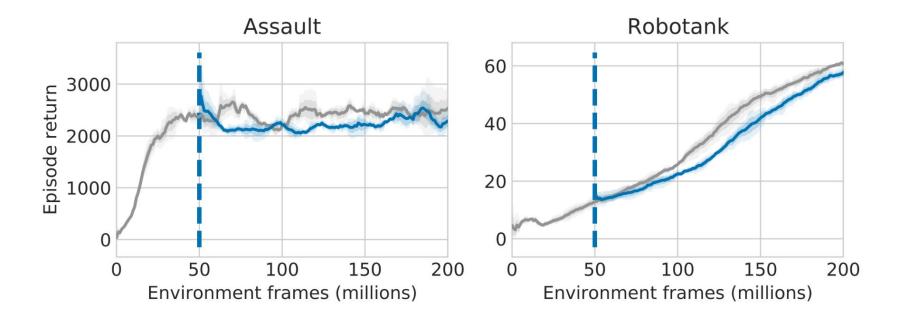


Negative Examples



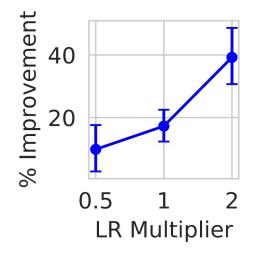


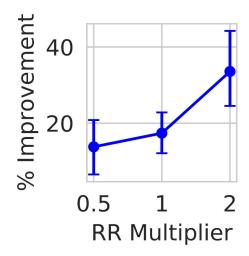
Negative Examples

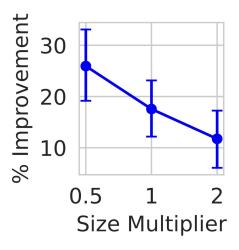


Extra Plasticity under Larger Plasticity Loss

- Learning rates, replay ratio, and network size control the plasticity loss pace
- Improvements from the injection grow with the amount of plasticity loss







Discussion

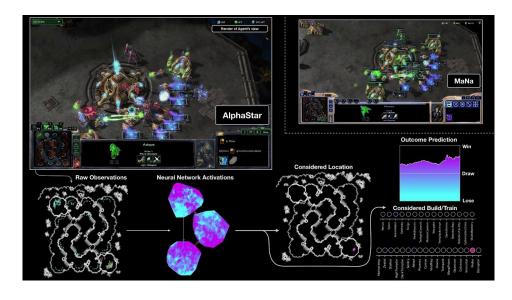
- Clean demo of the phenomenon in deep RL
- A diagnostic tool reveals non-uniform effects across games
- Additional plasticity addresses plasticity loss

Discussion

- Clean demo of the phenomenon in deep RL
- A diagnostic tool reveals non-uniform effects across games
- Additional plasticity addresses plasticity loss
- "Can't we just use a bigger net?"

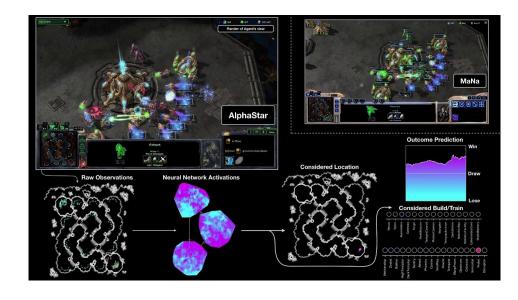
Large-Scale RL is Often Expensive

 Increased value of saving computations [Agarwal 2022]



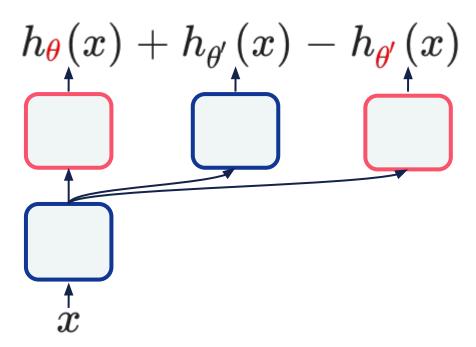
Large-Scale RL is Often Expensive

- Increased value of saving computations [Agarwal 2022]
- Do we need all plasticity from the beginning?
- What if we lose plasticity but want to keep learning?



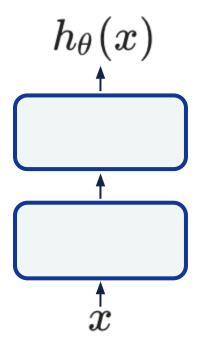
Injection vs Bigger Nets

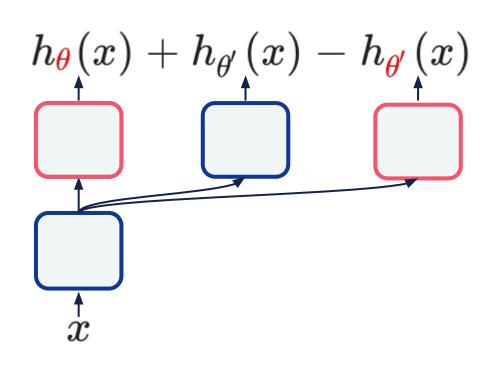
Plasticity injection @ 50M



Injection vs Bigger Nets

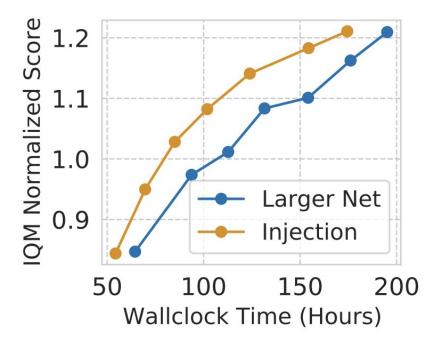
- Plasticity injection @ 50M
- Baseline: larger net





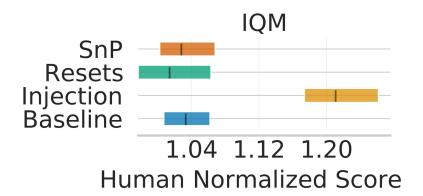
Injection vs Bigger Nets

- Extra plasticity might be unnecessary from the start
- Injection saves compute resources



Injection as a Mechanism to Keep Learning

- Shrink-and-Perturb [Ash 2020]: multiply weights by S, add noise with scale P.
 - Best hparams: S = 1, P = 0.01
- Resets
 - 4M buffer is too small in Atari 200M



Ablations

- Multiple times
- Injection iteration
- Without the 3rd term
- Unfrozen original network
- Adaptive criterion for injecting
- Versions without encoder sharing
- Interventions on weights vs optimizer state

Preventing plasticity loss in the first place

- The need to understand the plasticity loss causes
- Call for rethinking the deep learning foundations of deep RL

Summary

A diagnostic tool

If plasticity injection improves the learning progress, you are experiencing plasticity loss

Dynamic plasticity addition

Extra plasticity from the start might be unnecessary and costly; injection saves computations and allows keeping training

