Intriguing Properties of Quantization at Scale

Arash Ahmadian* Cohere For AI University of Toronto

Stephen Gou Cohere

≺ Cohere For AI

Hongyu Chen*

Bharat Venkitesh Cohere

Phil Blunsom Cohere

Ahmet Üstün Cohere For AI

Sara Hooker Cohere For AI <u>Massive Interest in</u> <u>Quantizing LLMs</u>

A Survey of Quantization Methods for Efficient Neural Net

CPTO: A COUR ATE POST TP AINING QUANTIZATION

Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models JED TRANSFORMERS

Transformer Quantization

LLM.int8(): 8-bit Matri for Transformers

INTEGER QUANTIZATION FOR DEEP LEARNING INFERENCE: PRINCIPLES AND EMPIRICAL EVALUATION

<u>LLMs Burn through GPU</u> <u>Credits Faster than Fire</u>

	What people talk about	What really matters
2016	Number of layers	Performance, latency, cost
2018	Papers @ NeurIPS	Performance, latency, cost
2019	State-of-the-art GLUE score	Performance, latency, cost
2020	Amount of compute	Performance, latency, cost
2022	Number of parameters	Performance, latency, cost
2023	Context length	Performance, latency, cost

Spotted by Patrick Lewis at UCL; source unknown

Emergent Properties in Large Models

Emergent Properties

 Properties/abilities that are "present in larger language models but not in smaller ones"<u>(Wei et. al.,</u> <u>2022)</u>

• Quantization can help remedy this cost

Quantization: A ray of hope for efficiency

CPU/GPU memory CPU/GPU computation I/O - data movement

Quantization: reduce the amount of data to store, compute and move

Background: Quantization

Traditional absmax-int8:

$$\mathbf{X}_{i8} = \left\lfloor \frac{127 \cdot \mathbf{X}_{f16}}{\max_{ij}(|\mathbf{X}_{f16_{ij}}|)} \right\rceil = \left\lfloor \frac{127}{\|\mathbf{X}_{f16}\|_{\infty}} \mathbf{X}_{f16} \right\rceil = \left\lfloor s_{x_{f16}} \mathbf{X}_{f16} \right\rceil,$$

Pros: Straight forward
Cons: Not enough granularity in most cases

Vectorwise INT8 MatMul

$\mathbf{X}\mathbf{W}\approx\mathbf{s}_{\mathbf{x}}\odot(\mathbf{X}_{\mathbf{Q}}\mathbf{W}_{\mathbf{Q}})\odot\mathbf{s}_{\mathbf{w}}$

 $\mathbf{s_x} \in \mathbb{R}^t$

Weight quantization Activation quantization INT8 MatMul

Vectorwise INT8 Methods FAIL at Scale?

≺ Cohere For AI

Credits: Dettmers et al., 2022

Vectorwise INT8 Methods FAIL at Scale?

Better for memory, but adds computation overhead, no improvement on latency

Vectorwise INT8 Methods FAIL at Scale?

Method	OPT-175B I	BLOOM-176E	GLM-130B*
FP16	71.6%	68.2%	73.8%
W8A8	32.3%	64.2%	26.9%
ZeroQuant	31.7%	67.4%	26.7%
LLM.int8()	71.4%	68.0%	73.8%
Outlier Suppression	31.7%	54.1%	63.5%
SmoothQuant-O1	71.2%	68.3%	73.7%
SmoothQuant-O2	71.1%	68.4%	72.5%
SmoothQuant-O3	71.1%	67.4%	72.8%

⊀ Cohere For AI

Credits: Xiao et al., 2022

Are Emergent Outliers due to Nature or Nurture?

Axes of Experimentation

03

Weight Decay

Gradient Clipping Dropout

Data-type Precision

2

<u>Methodology</u>

_

- Isolate effects of each optimization choice -> <u>controlled setup</u>
- High cost of training at scale -> <u>6B early checkpoint (75k steps)</u>

Experimental Axes	Choices			
Weight decay	$0.001, \ 0.01, \ 0.1$			
Gradient clipping	None, 1			
Dropout	0,0.1,0.4,0.8			
Half-precision	bf16, fp16			

Model and Dataset Details

• GPT based models trained with C4

Benchmark	Task Type	Evaluation Metric
Copa (test set)(Wang et al, 2019)	MC Completion	MC Accuracy
Copa100 (dev set) (Wang et al., 2019)	MC Completion	MC Accuracy
HellaSwag (Zellers et al., 2019)	MC Completion	MC Accuracy
PIQAValidation (Bisk et al, 2020)	MC Completion	MC Accuracy
StoryCloze (Mostafazadeh et al., 2016)	MC Completion	MC Accuracy
WinoGrande (Sakaguchi et al., 2019)	MC Co-referencing	MC Accuracy
Paralex (Fader et al., 2013)	Generation	Likelihood (bytes)
LAMBADA (Paperno et al, 2016)	Generation	Exact String Match Accuracy

Table 3: An Overview of the 8 tasks we benchmark the zero-shot downstream performance of trained models. QA and MC denotes Question Answering, and Multiple-choice respectively.

Weight Decay

Weight Decay

- Vary weight decay with gradient-clipping turned off
- Want to decouple their effects
- Higher weight decay \rightarrow better PTQ

Gradient Clipping

Gradient Clipping

- Vary gradient-clipping with weight decay = 0.001
- Want to decouple the effects of two
- Gradient Clipping \rightarrow better PTQ

Dropout

- Only applied to the activations right before a residual connection
- Not applied to embeddings
- dropout=0.8 has significantly worse fp16 performance (expected)
- Smaller dropout \rightarrow better PTQ

Data-type Precision

Data-type Precision

- FP16 has a smaller dynamic range \rightarrow higher precision
- BF16 has higher dynamic range (same as fp32) \rightarrow less precision
- FP16 training is very-hacky (loss-scaling, rewinding, etc.) while BF16 training is not

BF16 vs FP16

- Note: layernorm in fp32 since fp16 layernorm lead to loss divergence
- Fp16 \rightarrow worse PTQ (<u>most significant</u> out of all experimental axis)
- Degradation trend consistent over time

Half-precision data type: bf16 vs fp16

<u>Outliers</u>

Variant	# Outliers	%Seq Affected	%Layers Affected		
{all other variants}	0	0			
dtype=fp16 (wd=0.01)	6	68.4	65.5		
cohere_410M	1	25.0	26.3		
cohere_6B	0	0	0		
dropout=0.1	2	44.0	40.5		
dropout=0.4	2	44.9	42.9		
dropout=0.8	1	19.2	25		
wd=0.1 (gc=none)	2	28.0	39.3		
wd=0.01 (gc=none)	0	0	0		
wd=0.001 (gc=none)	2	34.3	34.5		
dtype=bf16 (wd=0.1)	2	33.0	36.9		
dtype=fp16 (wd=0.1)	2	41.1	42.9		
dtype=bf16 (wd=0.01)	0	0	0		
dtype=fp16 (wd=0.01)	8	66.2	64.3		
cohere_410M	55	88.2	86.2		
cohere_6B	7	65.5	56		

Table 5: Outlier statistic using different thresholding rules **Top Table**: constant threshold $\alpha > 4.2$ **Bottom Table**: adaptive threshold $\alpha > 4\sigma_{token} + \mu_{token}$

Weight Distribution

- <u>Attn-kqv-proj</u> exhibited the highest change between bf16 and fp16 variants
- <u>Layernorm</u> scales directly impact spread of activation values

Reconstruction Loss

- Directly relates to quantization error
- Generally, variants with higher degradation have higher loss

Activation Token Standard Deviation

- Measures spread of token activations → directly relates to expected quantization error for a Gaussian (Kuzmin et. al)
- Generally variants with higher std show higher PTQ degradation

Layernorm-gain Standard Deviation

std(g)

- Layernorm layers can act as activation outlier amplifiers [or suppressors] (<u>Wei et. al</u>)
- Determined by layernorm gain parameters
- Layernorms in variants with higher degradation generally have larger gain

Corresponding to First layernorm in the attention block

Spectral Norm

- Measures maximum degree of input activation noise amplification due to the weights
- Has been previously used in quantization coupled with robustness (Lin et al)

$$\|\mathbf{W}\|_2 = \sup_{\mathbf{x}_{\delta} \neq 0} \frac{\|\mathbf{W}\mathbf{x}_{\delta}\|_2}{\|\mathbf{x}_{\delta}\|_2} = \sigma_{max}$$

• This is also the Lipschitz constant for the MatMul function

Are Emergent Outliers due to Nature or Nurture?

Our Perspective: Nurture

A.1 Optimal Hyper-parameters

Weight decay	Gradient clipping	Dropout	Half-precision datatype
0.1	1.0	0	bf16

Table 2: Optimal hyper-parameters for PTQ based on results in Section 4

Nurture LLMs to be Quantization Friendly

Nurture LLMs to be Quantization Friendly

Model Size	Data type	PIQA	HellaSwag	WinoGrande	LAMBADA	Copa	Copa100	StoryCloze	Paralex	Average
Creating	FP16	83.19	82.48	70.01	75.47	79.40	81.00	85.87	61.05	77.31
52B	W8A8	83.20	82.40	70.00	75.50	79.40	82.00	85.50	61.10	77.39
	W4	80.20	72.22	66.30	66.85	78.20	83.00	82.56	60.43	73.72
13B	FP16	79.54	75.26	62.27	70.81	76.00	76.00	82.11	60.68	72.83
	W8A8	79.20	74.60	62.90	69.90	76.00	75.00	82.20	60.90	72.59
	W4	76.66	60.59	57.30	46.05	73.60	76.00	77.40	59.74	65.92
6B	FP16	79.50	74.20	61.20	70.50	75.40	79.00	81.50	60.10	72.67
	W8A8	79.50	73.70	61.40	70.00	74.60	77.00	81.00	60.20	72.18
	W4	76.93	62.92	56.43	55.40	74.00	72.00	77.21	59.01	66.74
410M	FP16	70.40	46.90	50.80	48.80	65.40	65.00	70.50	57.10	59.36
	W8A8	70.00	46.80	51.50	47.80	64.00	64.00	69.70	57.00	58.85
	W4	67.19	43.08	50.59	37.71	62.80	64.00	67.47	54.60	55.93

Table 4: Our fully trained models with hyper-parameters outlined in Table 2 show minimal PTQ degradation.

Final Takeaways

- Outliers at scale are due to nurture rather than nature
- Train with <u>bf16</u>, gradient clipping, higher weight decay, and low dropout
- Vectorwise INT8 quantization at scale is feasible

Contact:

saurabh@cohere.com

Scan for Paper

K Cohere For AI

Exploring the unknown, together

Web: cohere.for.ai
 Twitter: @forai_ml