
Intriguing Properties of 
Quantization at Scale



Arash 
Ahmadian*

Stephen 
Gou
Cohere

Saurabh 
Dash*
Cohere

Hongyu Chen*
Cohere

Bharat 
Venkitesh

Cohere

Phil 
Blunsom
Cohere

Ahmet 
Üstün
Cohere 
For AI

Sara 
Hooker
Cohere 
For AI

     Cohere For AI   
University of Toronto



Massive Interest in 
Quantizing LLMs



LLMs Burn through GPU 
Credits Faster than Fire

Spotted by Patrick Lewis at UCL; 
source unknown



Emergent Properties in 
Large Models



Emergent Properties

● Properties/abilities that 
are “present in larger 
language models but not in 
smaller ones”(Wei et. al., 
2022)

● Larger models → higher 
inference cost (latency, 
memory) 

● Quantization can help remedy 
this cost  

Few-shot performance (credits : Wei et. 
al., 2022)

https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682


Quantization: A ray of 
hope for efficiency



Quantization 101

CPU/GPU computation I/O - data movement CPU/GPU memory



Quantization 101

Quantization: reduce the amount of data to store, compute and move



Background: Quantization 
Traditional absmax-int8:

Pros: Straight forward 
Cons: Not enough granularity in most cases



Vectorwise INT8 MatMul



Quantization 101

Weight quantization

Activation quantization

INT8 MatMul



Quantization 101

Input



Quantization 101



Vectorwise INT8 Methods FAIL at Scale?

Credits: Dettmers et al., 2022



Better for memory, but adds computation overhead, no improvement on latency

Credits: Dettmers et al., 2022

Vectorwise INT8 Methods FAIL at Scale?



Vectorwise INT8 Methods FAIL at Scale?

Credits: Xiao et al., 2022



Are Emergent Outliers due to 
Nature or Nurture?“



Axes of Experimentation

01
Weight Decay

02
Gradient 
Clipping

03
Dropout

04
Data-type 
Precision



Methodology

● Isolate effects of each optimization choice -> controlled setup

● High cost of training at scale -> 6B early checkpoint (75k steps)



Model and Dataset Details

● GPT based models trained with C4



Weight Decay

01



Weight Decay

● Vary weight decay with 
gradient-clipping turned off 

● Want to decouple their effects
 

● Higher weight decay → better PTQ



Gradient Clipping

02



Gradient Clipping

● Vary gradient-clipping with 
weight decay = 0.001 

● Want to decouple the effects of 
two 
 

● Gradient Clipping → better PTQ



Dropout

03



Dropout

● Only applied to the activations right 
before a residual connection 

● Not applied to embeddings 

● dropout=0.8 has significantly worse 
fp16 performance (expected) 

● Smaller dropout → better PTQ



Data-type Precision

04



Data-type Precision
● FP16 has a smaller dynamic range → higher precision 

● BF16 has higher dynamic range (same as fp32) → less precision 

● FP16 training is very-hacky (loss-scaling, rewinding, etc.) while 
BF16 training is not 

Source: Wikipedia 



BF16 vs FP16
● Note: layernorm in fp32 since fp16 layernorm lead to loss divergence 

● Fp16 → worse PTQ (most significant out of all experimental axis) 

● Degradation trend consistent over time 



Analysis



Outliers



Weight Distribution

● Attn-kqv-proj exhibited the highest change between bf16 and fp16 variants 

● Layernorm scales directly impact spread of activation values



Reconstruction Loss
● Directly relates to quantization error

● Generally, variants with higher 
degradation have higher loss 



Activation Token Standard Deviation

● Measures spread of token activations → 
directly relates to expected 
quantization error for a Gaussian 
(Kuzmin et. al)

● Generally variants with higher std show 
higher PTQ degradation 

https://arxiv.org/pdf/2208.09225.pdf


Layernorm-gain Standard Deviation

● Layernorm layers can act as activation 
outlier amplifiers [or suppressors] 
(Wei et. al) 

● Determined by layernorm gain parameters

● Layernorms in variants with higher 
degradation generally have larger gain 
 

Corresponding to First layernorm in the attention block

https://openreview.net/pdf?id=yW5zeRSFdZ


Spectral Norm
● Measures maximum degree of input 

activation noise amplification due to 
the weights 

● Has been previously used in 
quantization coupled with robustness 
(Lin et al)

● This is also the Lipschitz constant for 
the MatMul function

https://openreview.net/pdf?id=ryetZ20ctX


Are Emergent Outliers due to 
Nature or Nurture?“



Our Perspective: Nurture



Nurture LLMs to be Quantization Friendly 



Nurture LLMs to be Quantization Friendly 



Final Takeaways
● Outliers at scale are due to nurture rather than nature
● Train with bf16, gradient clipping, higher weight 

decay, and low dropout
● Vectorwise INT8 quantization at scale is feasible

Contact:

saurabh@cohere.com
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Exploring the unknown, together

Web: cohere.for.ai

Twitter: @forai_ml


