
Intriguing Properties of
Quantization at Scale

Arash
Ahmadian*

Stephen
Gou
Cohere

Saurabh
Dash*
Cohere

Hongyu Chen*
Cohere

Bharat
Venkitesh

Cohere

Phil
Blunsom
Cohere

Ahmet
Üstün
Cohere
For AI

Sara
Hooker
Cohere
For AI

 Cohere For AI
University of Toronto

Massive Interest in
Quantizing LLMs

LLMs Burn through GPU
Credits Faster than Fire

Spotted by Patrick Lewis at UCL;
source unknown

Emergent Properties in
Large Models

Emergent Properties

● Properties/abilities that
are “present in larger
language models but not in
smaller ones”(Wei et. al.,
2022)

● Larger models → higher
inference cost (latency,
memory)

● Quantization can help remedy
this cost

Few-shot performance (credits : Wei et.
al., 2022)

https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682

Quantization: A ray of
hope for efficiency

Quantization 101

CPU/GPU computation I/O - data movement CPU/GPU memory

Quantization 101

Quantization: reduce the amount of data to store, compute and move

Background: Quantization
Traditional absmax-int8:

Pros: Straight forward
Cons: Not enough granularity in most cases

Vectorwise INT8 MatMul

Quantization 101

Weight quantization

Activation quantization

INT8 MatMul

Quantization 101

Input

Quantization 101

Vectorwise INT8 Methods FAIL at Scale?

Credits: Dettmers et al., 2022

Better for memory, but adds computation overhead, no improvement on latency

Credits: Dettmers et al., 2022

Vectorwise INT8 Methods FAIL at Scale?

Vectorwise INT8 Methods FAIL at Scale?

Credits: Xiao et al., 2022

Are Emergent Outliers due to
Nature or Nurture?“

Axes of Experimentation

01
Weight Decay

02
Gradient
Clipping

03
Dropout

04
Data-type
Precision

Methodology

● Isolate effects of each optimization choice -> controlled setup

● High cost of training at scale -> 6B early checkpoint (75k steps)

Model and Dataset Details

● GPT based models trained with C4

Weight Decay

01

Weight Decay

● Vary weight decay with
gradient-clipping turned off

● Want to decouple their effects

● Higher weight decay → better PTQ

Gradient Clipping

02

Gradient Clipping

● Vary gradient-clipping with
weight decay = 0.001

● Want to decouple the effects of
two

● Gradient Clipping → better PTQ

Dropout

03

Dropout

● Only applied to the activations right
before a residual connection

● Not applied to embeddings

● dropout=0.8 has significantly worse
fp16 performance (expected)

● Smaller dropout → better PTQ

Data-type Precision

04

Data-type Precision
● FP16 has a smaller dynamic range → higher precision

● BF16 has higher dynamic range (same as fp32) → less precision

● FP16 training is very-hacky (loss-scaling, rewinding, etc.) while
BF16 training is not

Source: Wikipedia

BF16 vs FP16
● Note: layernorm in fp32 since fp16 layernorm lead to loss divergence

● Fp16 → worse PTQ (most significant out of all experimental axis)

● Degradation trend consistent over time

Analysis

Outliers

Weight Distribution

● Attn-kqv-proj exhibited the highest change between bf16 and fp16 variants

● Layernorm scales directly impact spread of activation values

Reconstruction Loss
● Directly relates to quantization error

● Generally, variants with higher
degradation have higher loss

Activation Token Standard Deviation

● Measures spread of token activations →
directly relates to expected
quantization error for a Gaussian
(Kuzmin et. al)

● Generally variants with higher std show
higher PTQ degradation

https://arxiv.org/pdf/2208.09225.pdf

Layernorm-gain Standard Deviation

● Layernorm layers can act as activation
outlier amplifiers [or suppressors]
(Wei et. al)

● Determined by layernorm gain parameters

● Layernorms in variants with higher
degradation generally have larger gain

Corresponding to First layernorm in the attention block

https://openreview.net/pdf?id=yW5zeRSFdZ

Spectral Norm
● Measures maximum degree of input

activation noise amplification due to
the weights

● Has been previously used in
quantization coupled with robustness
(Lin et al)

● This is also the Lipschitz constant for
the MatMul function

https://openreview.net/pdf?id=ryetZ20ctX

Are Emergent Outliers due to
Nature or Nurture?“

Our Perspective: Nurture

Nurture LLMs to be Quantization Friendly

Nurture LLMs to be Quantization Friendly

Final Takeaways
● Outliers at scale are due to nurture rather than nature
● Train with bf16, gradient clipping, higher weight

decay, and low dropout
● Vectorwise INT8 quantization at scale is feasible

Contact:

saurabh@cohere.com

Scan for Paper

Exploring the unknown, together

Web: cohere.for.ai

Twitter: @forai_ml

