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Stationary learning is easy*



Learning under non-stationarity is hard



Why is non-stationarity such a challenge?

1. Features learned for early tasks might not be helpful on later tasks – worst 
case: might bake in spurious correlations

2. Non-stationarity often caused by bootstrapping: network uses its own 
outputs to construct the task, introducing feedback loops that can drive 
instability

3. As training progresses, network accumulates pathologies that make it harder to 
optimize

“Plasticity loss”



Progress on early tasks can interfere with 
later tasks

UK government paints 
instructions on road to 
mitigate poor 
adaptation of tourists 
to distribution shift of 
British traffic patterns.

Features that are helpful in one situation 
might be detrimental to learning in 
another

E.g. network learns to depend on spurious 
correlations which are only revealed to be 
spurious later in training (Ash & Adams, 
2020)

Can be viewed as a form of plasticity loss



Many non-stationary objectives are fundamentally 
unstable

Optimization path for supervised 
classification

Optimization path for Deep Q-Network



Emergence of pathologies in the network

Freshly initialized parameters are easy to 
train

BUT no reason to expect optimization to 
preserve this property

Example: networks with fully-connected 
layers often accumulate dead units as 
they train, and networks with attention 
layers often exhibit logit norm growth 
that can interfere with gradient 
propagation.

The emergence of optimization 
pathologies is the main form of plasticity 
loss that we will focus on in this talk.



Why focus on plasticity?



Plasticity is necessary for learning

In order to learn, need to be able to change predictions

Neural networks which have lost plasticity due to e.g. saturating all hidden units of a layer are not able to 
respond to reward signal quickly enough to improve their policy even if they do randomly stumble on a reward.

Agent trained with regularization 
to avoid feature collapse, takes 
advantage of sparse reward

Agent trained without 
regularization saturates all 
ReLUs, never recovers



Loss of plasticity is pervasive

???



Talk outline

1. Define and characterize plasticity in neural networks

2. Dig into the mechanisms of plasticity loss

3. Compare some (partial) solutions

4. Discuss open questions



1 Characterizing 
plasticity in 
neural 
networks



Formalizing 
plasticity



“ The less a science has 
advanced, the more its 
terminology tends to 
rest on an uncritical 
assumption of mutual 
understanding.

Quine

Confidential — Google DeepMind



Plasticity
Noun

1. The state of being plastic.
2. The capacity for continuous alteration of the neural pathways 

and synapses of the living brain and nervous system in 
response to experience or injury.

3. The ability of a learning system to adapt to changes in its 
environment or objective function.



Neural plasticity in the wild

Long-term research problem in neuroscience: how 
does the brain learn?

Depends on formation of new connections between 
neurons

Would imply that artificial neural networks with fixed 
architectures never gain or lose plasticity

So we want a different definition



Defining plasticity in artificial neural networks

Want a quantity which:

- Depends on the optimization algorithm, 
architecture, and parameters we start from

- Is higher when the network can quickly learn 
new things, and lower when it cannot

- Looks at changes in the outputs of the 
network, not its internal structure

- Depends on the class of new tasks we want 
the network to be able to learn



Idea: measure plasticity by testing 
the network’s ability to quickly solve 
new tasks.

Measuring plasticity
Task A Task B

Task C Task D
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Measuring plasticity

θ0
Opt(θ0)

θt
Opt(θt)

Idea: measure plasticity by testing the 
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training 
budget to get optimization protocol O

- Start from the parameters whose 
plasticity we want to evaluate

- Randomly sample a “probe” learning 
task from some distribution.

- Run the optimization protocol from 
starting parameters and evaluate loss at 
end of optimization.



Measuring plasticity

For some probe task gω define probe task loss

Set b to be some baseline (e.g. the average loss obtained by predicting the mean on the set of 
probe tasks), and let l ~ L denote sampling a loss from a distribution of probe tasks gω. Then 
plasticity can be defined as:
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Desiderata checklist

- Depends on the optimization algorithm ✅
- Is higher when the network can quickly learn new things, and lower when it cannot ✅
- Looks at changes in the outputs of the network, not its internal structure ✅
- Depends on the class of new tasks we want the network to be able to learn ✅



Expected vs empirical risk minimization

What distribution X do we want to draw from?

Want to ensure that the network can minimize the loss on its training data.

Also want the network to generalize well to new inputs.

This talk will focus on convergence on training data.



Faces of 
plasticity loss



Warm starting

Observed in 2019 in the context of 
“warm-starting” neural network training.

Pre-training on half of CIFAR-10 for several 
epochs results in worse generalization than 
training on the whole dataset from the start

Ash & Adams, 2019



Implicit Under-parameterization

Observation that the effective rank of the feature embeddings tends to decline over time, corresponding to 
performance and feature collapse.

Agarwal et al., 2020



Capacity Loss

Observation that in some cases, training a neural network on a sequence of tasks makes it harder to learn on 
new tasks – even if the new tasks are drawn from the same distribution as what the network was trained on.

Lyle et al., 2021



The Primacy Bias

Early training data has outsized impact on 
generalization and inductive biases

Network resets in deep RL can boost performance

Related to “critical learning periods” in visual 
system

Nikishin et al., 2022

Lyle et al., 2022

Achille et al., 2017



2 Mechanisms of 
plasticity loss



Model organisms of plasticity loss



Two models of non-stationary learning

1. (Re-)randomized label memorization
a. Models sudden, drastic changes 

in the task

2. Q-learning on an image classification 
“MDP”

a. Non-stationarity implicitly 
induced by target network 
updates

R = I[a = dog]

S’ ~ Unif(CIFAR10)

T=1

f(x)=1       f(x)=2

T=2

f(x)=6      f(x)=6



Two models of non-stationary learning

1. (Re-)randomized label memorization
a. Models sudden, drastic changes in the task
b. Simulates noisy or hard-to-learn relationships in the real world that 

network may have to quickly adapt to.
c. Amenable to both classification and regression losses

T=1

f(x)=1       f(x)=2

T=2

f(x)=6      f(x)=6



Classification as an MDP

2. Q-learning on an image classification “MDP”

a. Non-stationarity implicitly induced by target network updates
b. Very dense-reward
c. Can consider variations where e.g. rewards correspond to random 

labels (so must be memorized), or where rewards are only given for a 
subset of classes

d. No exploration confounding – can even collect data using hand-coded 
optimal policy 

e. More natural form of nonstationarity

R = I[a = dog]

S’ ~ Unif(CIFAR10)



Problem 1: accumulating saturated units

Networks tend to accumulate dead 
units

Can be hard to undo because no 
gradients

Have to hope that the preceding 
layer features eventually 
accidentally wander back into a 
regime with positive dot product

Accuracy

Fraction 
dead units
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Problem 1: accumulating saturated units

Not a huge problem in single-task setting

BUT a big problem when the correlations between 
features and targets change.

Network can accidentally go overboard and kill off 
activations

Exacerbated by adaptive optimizer step size



Problem 2: difficulty navigating loss landscape

Learning curve on new probe task 
after 100 iterations of RL training

Learning curve on new probe task of 
random initialization



Problem 2: difficulty navigating loss landscape

But why is the loss landscape 
getting harder to navigate?

Partially due to nature of 
learning problem: regression on 
large target is hard for neural 
networks

But seems to also be driven by 
something more fundamental – 
see similar issues even in 
classification tasks



Correlates of plasticity

Are there easy-to-measure properties of a network that 
correlate with plasticity, and which we can intervene on to 
improve the network’s adaptability to new tasks?

A good explanation of plasticity should be consistent under 
different experimental settings. 



Correlates of plasticity

Are there easy-to-measure properties of a network that 
correlate with plasticity, and which we can intervene on to 
improve the network’s adaptability to new tasks?

A good explanation of plasticity should be consistent under 
different experimental settings. 

Consider several candidate causal factors in plasticity loss:

1. Weight norm 
2. Weight rank 
3. Number of dead units 
4. Numerical rank of feature embeddings. 



Correlates of plasticity

Test several candidate causal factors in plasticity loss:

1. Weight norm ❌
2. Weight rank ❌
3. Number of dead units ❌
4. Numerical rank of feature embeddings. ❌



“ Trainable 
networks are all 
alike; every 
untrainable 
network is 
untrainable in its 
own way.



3 How to 
maintain 
plasticity



Caveat: trade-offs

- Learning systems face a 
“stability-plasticity trade-off”

- To maintain plasticity, could 
frequently re-initialize the entire 
network 

- However, also want to be able to 
take advantage of things the 
network has learned so far

- Plasticity is also likely in tension 
with catastrophic forgetting (out 
of scope of this talk)

St
ab

ili
ty

Plasticity

Pareto frontier

Freeze parameters

Reset parameters every 10 
optimizer steps
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Three simple fixes

Bigger networks
Scale is beneficial for a variety of 
reasons – easier to smoothly 
interpolate, more expressive in 
general

Stable architectures
Use architectural tricks 
(normalization, residual 
connections, etc.) known to make 
optimizers behave better.

Nicer parameterizations
Choose parameterizations of the 
learning problem that are 
scale-invariant and induce nice 
loss landscapes



Solution 1: get a bigger network

Larger networks lose plasticity less. However, need extremely overparameterized networks for this to work, and 
size of network needed scales with problem complexity. 



Solution 2: use a more stable architecture



Solution 3: re-parameterize the 
learning objective

Softmax cross-entropy has nice 
bounded gradients (w.r.t. logits), and is 
translation-invariant w.r.t. the scale of the 
support of the distribution

Re-parameterizing network output this 
way resolves a lot of optimization issues 
that come up from having increasing 
targets in RL.



Subtitle

Fun solutions



“Trivial” solution

Reset the entire network!

Not actually trivial: have to figure out how to get the re-initialized parameters back up to speed quickly.

(Igl, Farquhuar, Whiteson; 2023)



Resetting a single layer

Lazier version: just reset individual layers (usually the last one). 

Not as crazy as it sounds – c.f. “Are all layers created equal?” (Zhang et al., JMLR 2022).

(Nikishin*, D’Oro*, 
Schwarzer*, et al; 2023)



Adding another network

Rather than resetting the network and 
starting from scratch, freeze network 
and sum the outputs of frozen + freshly 
initialized networks.

Number of trainable parameters stays 
constant, but effective capacity is 
increased.

Can allow DQN agents to break through 
plateaus in atari.

Nikishin, Oh, Ostrovski, L, Pascanu, 
Dabney, Barreto, 2023



Resetting units

Resetting units which aren’t “useful” (for some notion of utility) 
can improve robustness of RL algorithms in nonstationary 
tasks. 

Can use an even simpler heuristic: reset a ReLU unit if it is zero 
on all inputs.

Leads to significant performance improvements in online, 
value-based RL agents trained on Atari domain.

(Dohare, Sutton, & Mahmood; 2022)

(Sokar, Agarwal, Castro, Evci, 2023)



Picking better activation functions

Using concatenated ReLU rather than ReLU activations improves robustness in RL agent trained on a sequence 
of different Atari games and levels.

Abbas, Zhao, Modayil, White, 
& Machado. 2023



Feature regularization

Regress random projections of features back to the value they had at initialization.

Avoids representation collapse, but may limit degrees of freedom during optimization.

L, Rowland, Dabney, 
2022



4 What’s next



Implications for large models

● Bigger models exhibit less plasticity 
loss

● Harder tasks induce more plasticity 
loss

● Unknown whether large language 
models are big enough to not 
exhibit plasticity loss on all 
economically relevant tasks that 
might require continual learning



Implications of pre-training, and for fine-tuning

● Some plasticity loss is probably desirable if it 
improves domain-relevant performance

● Pre-training on sufficiently diverse data 
unlikely to reduce plasticity on the training 
domain

● However, fine-tuning on a sequence of many 
datasets might present a problem if the 
network loses plasticity over time



Theoretical understanding

● Still don’t have a great theoretical model of plasticity or 
trainability

● Signal propagation perspectives from neural network 
initialization are data-agnostic, don’t reflect data 
dependence we see in practice

● Possible connection to other findings on learning 
dynamics in supervised learning?



Characterizing trade-offs

Don’t have a fine-grained model of which tasks 
require plasticity loss and which don’t

Plasticity loss that arises from increased 
compression may be necessary for 
generalization

Suggests there may be fundamental tradeoffs 
between plasticity and efficiency/generalization



Conclusions



So what have we learned?

1. Plasticity loss is observed in a variety of contexts where non-stationary training 

dynamics occur

2. At least in extreme cases, this can prevent agents from improving their 

performance

3. A variety of promising approaches exist to reduce the loss of plasticity

4. But we don’t have a way of avoiding the need to eventually reset the network, i.e. we 

can’t avoid plasticity loss entirely yet.



Thanks!


