
Understanding
plasticity in neural

networks
Clare Lyle

Google DeepMind

Deep Learning Classics & Trends

Credits

Talk mostly focuses on results from paper

“Understanding Plasticity in Neural
Networks” presented @ ICML this summer

Thanks go to several fantastic
collaborators!

Evgenii Nikishin Zeyu Zheng Will Dabney

Bernardo Avila
Pires

Razvan Pascanu

Stationary learning is easy*

Learning under non-stationarity is hard

Why is non-stationarity such a challenge?

1. Features learned for early tasks might not be helpful on later tasks – worst
case: might bake in spurious correlations

2. Non-stationarity often caused by bootstrapping: network uses its own
outputs to construct the task, introducing feedback loops that can drive
instability

3. As training progresses, network accumulates pathologies that make it harder to
optimize

“Plasticity loss”

Progress on early tasks can interfere with
later tasks

UK government paints
instructions on road to
mitigate poor
adaptation of tourists
to distribution shift of
British traffic patterns.

Features that are helpful in one situation
might be detrimental to learning in
another

E.g. network learns to depend on spurious
correlations which are only revealed to be
spurious later in training (Ash & Adams,
2020)

Can be viewed as a form of plasticity loss

Many non-stationary objectives are fundamentally
unstable

Optimization path for supervised
classification

Optimization path for Deep Q-Network

Emergence of pathologies in the network

Freshly initialized parameters are easy to
train

BUT no reason to expect optimization to
preserve this property

Example: networks with fully-connected
layers often accumulate dead units as
they train, and networks with attention
layers often exhibit logit norm growth
that can interfere with gradient
propagation.

The emergence of optimization
pathologies is the main form of plasticity
loss that we will focus on in this talk.

Why focus on plasticity?

Plasticity is necessary for learning

In order to learn, need to be able to change predictions

Neural networks which have lost plasticity due to e.g. saturating all hidden units of a layer are not able to
respond to reward signal quickly enough to improve their policy even if they do randomly stumble on a reward.

Agent trained with regularization
to avoid feature collapse, takes
advantage of sparse reward

Agent trained without
regularization saturates all
ReLUs, never recovers

Loss of plasticity is pervasive

???

Talk outline

1. Define and characterize plasticity in neural networks

2. Dig into the mechanisms of plasticity loss

3. Compare some (partial) solutions

4. Discuss open questions

1 Characterizing
plasticity in
neural
networks

Formalizing
plasticity

“ The less a science has
advanced, the more its
terminology tends to
rest on an uncritical
assumption of mutual
understanding.

Quine

Confidential — Google DeepMind

Plasticity
Noun

1. The state of being plastic.
2. The capacity for continuous alteration of the neural pathways

and synapses of the living brain and nervous system in
response to experience or injury.

3. The ability of a learning system to adapt to changes in its
environment or objective function.

Neural plasticity in the wild

Long-term research problem in neuroscience: how
does the brain learn?

Depends on formation of new connections between
neurons

Would imply that artificial neural networks with fixed
architectures never gain or lose plasticity

So we want a different definition

Defining plasticity in artificial neural networks

Want a quantity which:

- Depends on the optimization algorithm,
architecture, and parameters we start from

- Is higher when the network can quickly learn
new things, and lower when it cannot

- Looks at changes in the outputs of the
network, not its internal structure

- Depends on the class of new tasks we want
the network to be able to learn

Idea: measure plasticity by testing
the network’s ability to quickly solve
new tasks.

Measuring plasticity
Task A Task B

Task C Task D

Measuring plasticity

θ0
Opt(θ0)

θt
Opt(θt)

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training
budget to get optimization protocol O

Measuring plasticity

θ0
Opt(θ0)

θt
Opt(θt)

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training
budget to get optimization protocol O

- Start from the parameters whose
plasticity we want to evaluate

Measuring plasticity

θ0
Opt(θ0)

θt
Opt(θt)

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training
budget to get optimization protocol O

- Start from the parameters whose
plasticity we want to evaluate

- Randomly sample a “probe” learning
task from some distribution.

Measuring plasticity

θ0
Opt(θ0)

θt
Opt(θt)

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training
budget to get optimization protocol O

- Start from the parameters whose
plasticity we want to evaluate

- Randomly sample a “probe” learning
task from some distribution.

- Run the optimization protocol from
starting parameters and evaluate loss at
end of optimization.

Measuring plasticity

For some probe task gω define probe task loss

Set b to be some baseline (e.g. the average loss obtained by predicting the mean on the set of
probe tasks), and let l ~ L denote sampling a loss from a distribution of probe tasks gω. Then
plasticity can be defined as:

Desiderata checklist

- Depends on the optimization algorithm ✅
- Is higher when the network can quickly learn new things, and lower when it cannot

- Looks at changes in the outputs of the network, not its internal structure

- Depends on the class of new tasks we want the network to be able to learn

Desiderata checklist

- Depends on the optimization algorithm ✅
- Is higher when the network can quickly learn new things, and lower when it cannot ✅
- Looks at changes in the outputs of the network, not its internal structure

- Depends on the class of new tasks we want the network to be able to learn

Desiderata checklist

- Depends on the optimization algorithm ✅
- Is higher when the network can quickly learn new things, and lower when it cannot ✅
- Looks at changes in the outputs of the network, not its internal structure ✅
- Depends on the class of new tasks we want the network to be able to learn

Desiderata checklist

- Depends on the optimization algorithm ✅
- Is higher when the network can quickly learn new things, and lower when it cannot ✅
- Looks at changes in the outputs of the network, not its internal structure ✅
- Depends on the class of new tasks we want the network to be able to learn ✅

Expected vs empirical risk minimization

What distribution X do we want to draw from?

Want to ensure that the network can minimize the loss on its training data.

Also want the network to generalize well to new inputs.

This talk will focus on convergence on training data.

Faces of
plasticity loss

Warm starting

Observed in 2019 in the context of
“warm-starting” neural network training.

Pre-training on half of CIFAR-10 for several
epochs results in worse generalization than
training on the whole dataset from the start

Ash & Adams, 2019

Implicit Under-parameterization

Observation that the effective rank of the feature embeddings tends to decline over time, corresponding to
performance and feature collapse.

Agarwal et al., 2020

Capacity Loss

Observation that in some cases, training a neural network on a sequence of tasks makes it harder to learn on
new tasks – even if the new tasks are drawn from the same distribution as what the network was trained on.

Lyle et al., 2021

The Primacy Bias

Early training data has outsized impact on
generalization and inductive biases

Network resets in deep RL can boost performance

Related to “critical learning periods” in visual
system

Nikishin et al., 2022

Lyle et al., 2022

Achille et al., 2017

2 Mechanisms of
plasticity loss

Model organisms of plasticity loss

Two models of non-stationary learning

1. (Re-)randomized label memorization
a. Models sudden, drastic changes

in the task

2. Q-learning on an image classification
“MDP”

a. Non-stationarity implicitly
induced by target network
updates

R = I[a = dog]

S’ ~ Unif(CIFAR10)

T=1

f(x)=1 f(x)=2

T=2

f(x)=6 f(x)=6

Two models of non-stationary learning

1. (Re-)randomized label memorization
a. Models sudden, drastic changes in the task
b. Simulates noisy or hard-to-learn relationships in the real world that

network may have to quickly adapt to.
c. Amenable to both classification and regression losses

T=1

f(x)=1 f(x)=2

T=2

f(x)=6 f(x)=6

Classification as an MDP

2. Q-learning on an image classification “MDP”

a. Non-stationarity implicitly induced by target network updates
b. Very dense-reward
c. Can consider variations where e.g. rewards correspond to random

labels (so must be memorized), or where rewards are only given for a
subset of classes

d. No exploration confounding – can even collect data using hand-coded
optimal policy

e. More natural form of nonstationarity

R = I[a = dog]

S’ ~ Unif(CIFAR10)

Problem 1: accumulating saturated units

Networks tend to accumulate dead
units

Can be hard to undo because no
gradients

Have to hope that the preceding
layer features eventually
accidentally wander back into a
regime with positive dot product

Accuracy

Fraction
dead units

Problem 1: accumulating saturated units

Networks tend to accumulate dead
units

Can be hard to undo because no
gradients

Have to hope that the preceding
layer features eventually
accidentally wander back into a
regime with positive dot product

Accuracy

Fraction
dead units

Problem 1: accumulating saturated units

Networks tend to accumulate dead
units

Can be hard to undo because no
gradients

Have to hope that the preceding
layer features eventually
accidentally wander back into a
regime with positive dot product

Accuracy

Fraction
dead units

Problem 1: accumulating saturated units

Not a huge problem in single-task setting

BUT a big problem when the correlations between
features and targets change.

Network can accidentally go overboard and kill off
activations

Exacerbated by adaptive optimizer step size

Problem 2: difficulty navigating loss landscape

Learning curve on new probe task
after 100 iterations of RL training

Learning curve on new probe task of
random initialization

Problem 2: difficulty navigating loss landscape

But why is the loss landscape
getting harder to navigate?

Partially due to nature of
learning problem: regression on
large target is hard for neural
networks

But seems to also be driven by
something more fundamental –
see similar issues even in
classification tasks

Correlates of plasticity

Are there easy-to-measure properties of a network that
correlate with plasticity, and which we can intervene on to
improve the network’s adaptability to new tasks?

A good explanation of plasticity should be consistent under
different experimental settings.

Correlates of plasticity

Are there easy-to-measure properties of a network that
correlate with plasticity, and which we can intervene on to
improve the network’s adaptability to new tasks?

A good explanation of plasticity should be consistent under
different experimental settings.

Consider several candidate causal factors in plasticity loss:

1. Weight norm
2. Weight rank
3. Number of dead units
4. Numerical rank of feature embeddings.

Correlates of plasticity

Test several candidate causal factors in plasticity loss:

1. Weight norm ❌
2. Weight rank ❌
3. Number of dead units ❌
4. Numerical rank of feature embeddings. ❌

“ Trainable
networks are all
alike; every
untrainable
network is
untrainable in its
own way.

3 How to
maintain
plasticity

Caveat: trade-offs

- Learning systems face a
“stability-plasticity trade-off”

- To maintain plasticity, could
frequently re-initialize the entire
network

- However, also want to be able to
take advantage of things the
network has learned so far

- Plasticity is also likely in tension
with catastrophic forgetting (out
of scope of this talk)

St
ab

ili
ty

Plasticity

Pareto frontier

Freeze parameters

Reset parameters every 10
optimizer steps

Caveat: trade-offs

- Learning systems face a
“stability-plasticity trade-off”

- To maintain plasticity, could
frequently re-initialize the entire
network

- However, also want to be able to
take advantage of things the
network has learned so far

- Plasticity is also likely in tension
with catastrophic forgetting (out
of scope of this talk)

St
ab

ili
ty

Plasticity

Pareto frontier

Freeze parameters

Reset parameters every 10
optimizer steps

Gradient descent

Caveat: trade-offs

- Learning systems face a
“stability-plasticity trade-off”

- To maintain plasticity, could
frequently re-initialize the entire
network

- However, also want to be able to
take advantage of things the
network has learned so far

- Plasticity is also likely in tension
with catastrophic forgetting (out
of scope of this talk)

St
ab

ili
ty

Plasticity

Pareto frontier

Freeze parameters

Reset parameters every 10
optimizer steps

Gradient descent

Three simple fixes

Bigger networks
Scale is beneficial for a variety of
reasons – easier to smoothly
interpolate, more expressive in
general

Stable architectures
Use architectural tricks
(normalization, residual
connections, etc.) known to make
optimizers behave better.

Nicer parameterizations
Choose parameterizations of the
learning problem that are
scale-invariant and induce nice
loss landscapes

Solution 1: get a bigger network

Larger networks lose plasticity less. However, need extremely overparameterized networks for this to work, and
size of network needed scales with problem complexity.

Solution 2: use a more stable architecture

Solution 3: re-parameterize the
learning objective

Softmax cross-entropy has nice
bounded gradients (w.r.t. logits), and is
translation-invariant w.r.t. the scale of the
support of the distribution

Re-parameterizing network output this
way resolves a lot of optimization issues
that come up from having increasing
targets in RL.

Subtitle

Fun solutions

“Trivial” solution

Reset the entire network!

Not actually trivial: have to figure out how to get the re-initialized parameters back up to speed quickly.

(Igl, Farquhuar, Whiteson; 2023)

Resetting a single layer

Lazier version: just reset individual layers (usually the last one).

Not as crazy as it sounds – c.f. “Are all layers created equal?” (Zhang et al., JMLR 2022).

(Nikishin*, D’Oro*,
Schwarzer*, et al; 2023)

Adding another network

Rather than resetting the network and
starting from scratch, freeze network
and sum the outputs of frozen + freshly
initialized networks.

Number of trainable parameters stays
constant, but effective capacity is
increased.

Can allow DQN agents to break through
plateaus in atari.

Nikishin, Oh, Ostrovski, L, Pascanu,
Dabney, Barreto, 2023

Resetting units

Resetting units which aren’t “useful” (for some notion of utility)
can improve robustness of RL algorithms in nonstationary
tasks.

Can use an even simpler heuristic: reset a ReLU unit if it is zero
on all inputs.

Leads to significant performance improvements in online,
value-based RL agents trained on Atari domain.

(Dohare, Sutton, & Mahmood; 2022)

(Sokar, Agarwal, Castro, Evci, 2023)

Picking better activation functions

Using concatenated ReLU rather than ReLU activations improves robustness in RL agent trained on a sequence
of different Atari games and levels.

Abbas, Zhao, Modayil, White,
& Machado. 2023

Feature regularization

Regress random projections of features back to the value they had at initialization.

Avoids representation collapse, but may limit degrees of freedom during optimization.

L, Rowland, Dabney,
2022

4 What’s next

Implications for large models

● Bigger models exhibit less plasticity
loss

● Harder tasks induce more plasticity
loss

● Unknown whether large language
models are big enough to not
exhibit plasticity loss on all
economically relevant tasks that
might require continual learning

Implications of pre-training, and for fine-tuning

● Some plasticity loss is probably desirable if it
improves domain-relevant performance

● Pre-training on sufficiently diverse data
unlikely to reduce plasticity on the training
domain

● However, fine-tuning on a sequence of many
datasets might present a problem if the
network loses plasticity over time

Theoretical understanding

● Still don’t have a great theoretical model of plasticity or
trainability

● Signal propagation perspectives from neural network
initialization are data-agnostic, don’t reflect data
dependence we see in practice

● Possible connection to other findings on learning
dynamics in supervised learning?

Characterizing trade-offs

Don’t have a fine-grained model of which tasks
require plasticity loss and which don’t

Plasticity loss that arises from increased
compression may be necessary for
generalization

Suggests there may be fundamental tradeoffs
between plasticity and efficiency/generalization

Conclusions

So what have we learned?

1. Plasticity loss is observed in a variety of contexts where non-stationary training

dynamics occur

2. At least in extreme cases, this can prevent agents from improving their

performance

3. A variety of promising approaches exist to reduce the loss of plasticity

4. But we don’t have a way of avoiding the need to eventually reset the network, i.e. we

can’t avoid plasticity loss entirely yet.

Thanks!

