Google DeepMind

Understanding
plasticity in neural
networks

Clare Lyle
Google DeepMind

Credits

Talk mostly focuses on results from paper

“Understanding Plasticity in Neural
Networks” presented @ ICML this summer

Thanks go to several fantastic
collaborators!

Evgenii Nikishin Zeyu Zheng Will Dabney

Bernardo Avila
Pires

Razvan Pascanu

Stationary learning is easy*

forward + backward + optimize
net (inputs)
criterion(outputs, labels)
loss.backward()
optimizer.step()

cifar10 not converging site:stackoverflow.com X !,)
> Converse Videos Images Shopping News Maps Books Flights

stackoverflow.com
https://stackoverflow.com > questions » pytorch-deep-...

Pytorch deep convolutional network does not converge on ...
May 1, 2019 — Pytorch deep convolutional network does not converge on CIFAR10 - 1. worth

S

1 answer - Top answer: Use sigmoid activation for the last layer.

stackoverflow.com
https://stackoverflow.com » questions » vgg-model-no...

VGG model not converging on CIFAR10 dataset using ...

Mar 13, 2021 — Solved it by adding a momentum of 0.9 in the optimizer. Posting in case anyone

has similar issue in the future. — Aman Singh. Mar 26, 2021 at 8: ...

. stackoverflow.com
https:, flow.com » > vali d... }
validation and training don't converge at the same time, but ...
Aug 3, 2018 — | am modifying above code to do object detection using Resnet and Cifar10 as
training/validating dataset. (| know the dataset is for object ...
1 answer - Top answer: « The sudden step down is caused by the learning rate decay happening...

stackoverflow.com
https://stackoverflow.com » questions » fully-connecte...

Fully connected network loss not decreasing over CIFAR ...

i

(

reddit cifar10 not converging b 4 y G

> Converse Github Videos Images News Shopping Books Ma

Reddit
©

https://www.reddit.com > MLQuestions >» comments

Conv-2 CNN architecture - CIFAR-10 : r/MLQuestions

Feb 17,2020 — When | train this model, training and testing accuracy along with loss has a very
jittery behavior and does not converge properly. Is the ...

e Reddit ;

https://www.reddit.com » MachineLearning » comments

[R] Train CIFAR10 in under 10 seconds on an A100 (new ...

Jan 30, 2023 — Hello everyone,. We're continuing our journey to training CIFAR10 to 94% in under
2 seconds, carrying on the lovely work that David Page ...

(p) Using Lora To... - (n) Cuda Architect And... - (n) Openai's New Language...

e Reddit ,

https://www.reddit.com > MachineLearning » comments

[D] Super-Convergence Skepticism : r/MachineLearning

Sep 15,2019 — in my experience there is no actual improvement in time or accuracy. | used a
cyclical learning rate (multiple cycles of super convergence).

More Posts You May Like - (d) Tensorflow Dropped... - (n) Cuda Architect And...

e Reddit 3

https://www.reddit.com > MachineLearning » comments

[D] Neural nets that refuse to converge : r/MachineLearning

May 22,2017 — I've used neural nets for several projects, some of which have succeeded and
some of which have failed. Almost always, | am forced to write ...

More Posts You May Like - (p) Coding Stable Diffusion... - (p) Deep Memory, A Way To...
Missing: eifart8 | Show results with: cifar10

e Reddit ,

https://www.reddit.com > MachineLearning » comments

[R] Authors Claim to Have "Solved" MNIST and CIFAR

Apr 20, 2022 — We report results on AFHQ dataset, Four Shapes, MNIST and CIFAR10 achieving
100% accuracy on all tasks. You thought it was fishy. Now it's 4 ...

Learning under non-stationarity is hard

e Reddit
https://www.reddit.com > comments > dqn_agent_doe...

DQN agent doesn't learn : r/reinforcementlearning
Sep 17, 2022 — | think the problem could be your dqn_update_time. It is defined inside the
function and is not global. It is only decremented once and will ...

22 votes [DQN - Q-Loss not converging @ Reddt
The Q-values are converging, too (see figure 1). However, for all different settings of hyperpara- e e camrsman(sa BRI FB..
meter the Q-loss is not converging (see figure 2). ... Do you have ideas why the Q-loss is not... Issues with the training process of DQN
Aug 16, 2023 — Hello everyone, | NEED YOUR HELP ! Currently I'm working on a DQN agent
tensorflow deep-learning reinforcement-learning g-learning with: - 42 state features that vary between 0 and 1, - 49 actions
&8 users861893 229 asked Oct 31, 2017 at 13:07 @ Rewt
https://www.reddit.com > comments > dgn_from_scrat...
DQN from scratch not able to learn any environment, no ...
& Stack Overflow Nov 13, 2022 — I've attempted to implement a DQN from scratch, without importing the neural
= https://stackoverflow.com) questions) why-is-my-dq“. 5 network from a library, and have attempted to get it to work with ...
Why is my DQN (Deep Q Network) not learning? @ Rost

https://www.reddit.com > comments > wfgbgs > why_i...

Jun 29, 2021 — | am training a DQN (Deep Q Network) on a CartPole problem from OpenAl's

. . Why is my DQN cartpole not learning?
gym, but when | start the training, the total score from an episode ...

Aug 4, 2022 — | coded in a DQN (without any target network). For some reason, the algorithm

DQN not working Properly - Stack Overflow Dec 4. 2017 fails to learn any meaningful policy. Here's my code.
Why is my Deep Q Network not learning to play a simple game? Apr 20, 2020 o e

My neural network does not appear to learn DQN Nov 27, 2022 hitps:/f¥wi.raddit Gom;Comments.» 4gf ol _lesming
DQN not converging - Stack Overflow Oct 10, 2022 DQN not learning : r/reinforcementlearning

Aug 5, 2022 — DQN not learning ... | posted a prior version of my code before and got some
More results from stackoverflow.com good suggestions. I've modified my code and would highly appreciate ...

Why is non-stationarity such a challenge?

1. Features learned for early tasks might not be helpful on later tasks — worst
case: might bake in spurious correlations

2. Non-stationarity often caused by bootstrapping: network uses its own
outputs to construct the task, introducing feedback loops that can drive
instability

3. As training progresses, network accumulates pathologies that make it harder to
optimize

“Plasticity loss”

Progress on early tasks can interfere with

later tasks

Features that are helpful in one situation
might be detrimental to learning in
another

E.g. network learns to depend on spurious
correlations which are only revealed to be
spurious later in training (Ash & Adams,
2020)

Can be viewed as a form of plasticity loss

British traffic patterns.

UK government paints
instructions on road to
mitigate poor
adaptation of tourists
to distribution shift of

W AN

P ~-'—'-A.vﬂ-' at

Many non-stationary objectives are fundamentally
unstable

Optimization path for supervised Optimization path for Deep Q-Network
classification

Emergence of pathologies in the network

Freshly initialized parameters are easy to
train

BUT no reason to expect optimization to
preserve this property

Example: networks with fully-connected
layers often accumulate dead units as
they train, and networks with attention
layers often exhibit logit norm growth
that can interfere with gradient e
propagation. 4 '

The emergence of optimization
pathologies is the main form of plasticity
loss that we will focus on in this talk.

Why focus on plasticity?

Plasticity is necessary for learning

In order to learn, need to be able to change predictions

Neural networks which have lost plasticity due to e.g. saturating all hidden units of a layer are not able to
respond to reward signal quickly enough to improve their policy even if they do randomly stumble on a reward.

Agent trained with regularization
to avoid feature collapse, takes
advantage of sparse reward

montezuma_revenge montezuma_revenge

j =

>— = 600
x =
= 400 1 v

; L 400 1
= 2
=~ 200 a

= 2 2001
w w c
©

01 - 0

0 50 100 WQ 200 0 100 150 200
Millions of frames Millions of frames

Agent trained without
regularization saturates all
ReLUs, never recovers

Loss of plasticity is pervasive

v

e/2™ (¢, v)dv

2@ = |

0

Z,(¢) = f e-rmtv (7, fyde

Talk outline

1. Define and characterize plasticity in neural networks
2. Dig into the mechanisms of plasticity loss
3. Compare some (partial) solutions

4. Discuss open questions

O Google DeepMind

Characterizing
1 plasticity In

neural

networks

Formalizing
plasticity

66

The less a science has
advanced, the more its
terminology tends to
rest on an uncritical
assumption of mutual
understanding.

Quine

Plasticity

Noun

1. The state of being plastic.

2. The capacity for continuous alteration of the neural pathways
and synapses of the living brain and nervous system in
response to experience or injury.

3. The ability of a learning system to adapt to changes in its
environment or objective function.

Neural plasticity in the wild

Long-term research problem in neuroscience: how
does the brain learn?

Depends on formation of new connections between
neurons

Would imply that artificial neural networks with fixed
architectures never gain or lose plasticity

So we want a different definition

= 5

X
7

™
o L4

oA
é\

Ay
T LapS

<X
e
£

=

B

&

.
X
7

"lll‘-‘l_

A&

(o)
il—-‘,(

yii
\
G

[

A

Ir
o
=

%
%

S
rirff.

|
|
o

Defining plasticity in artificial neural networks

Want a quantity which:

- Depends on the optimization algorithm,
architecture, and parameters we start from

- Is higher when the network can quickly learn
new things, and lower when it cannot

- Looks at changes in the outputs of the
network, not its internal structure

0
<N
N\ \\
;}

\/J

() "

NI
\} :‘»:': e
LS
0‘0‘0

- Depends on the class of new tasks we want
the network to be able to learn

Measuring plasticity Task A Task B

Idea: measure plasticity by testing t
the network'’s ability to quickly solve
new tasks.

Task D

Measuring plasticity

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training
budget to get optimization protocol O

Yoy

Opt(eo)

Opt(et)

ﬂk

Measuring plasticity

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training
budget to get optimization protocol O

- Start from the parameters whose
plasticity we want to evaluate

Measuring plasticity

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

- Use a fixed optimizer and training
budget to get optimization protocol O

- Start from the parameters whose
plasticity we want to evaluate

- Randomly sample a “probe” learning
task from some distribution.

Measuring plasticity

Idea: measure plasticity by testing the
network’s ability to quickly solve new tasks.

Use a fixed optimizer and training
budget to get optimization protocol O

Start from the parameters whose
plasticity we want to evaluate

Randomly sample a “probe” learning
task from some distribution.

Run the optimization protocol from
starting parameters and evaluate loss at
end of optimization.

Measuring plasticity

For some probe task g define probe task loss

gf,X(e) — 4:x~X[(f(07 X) — Jw (X))2]

Set b to be some baseline (e.g. the average loss obtained by predicting the mean on the set of
probe tasks), and let | ~ L denote sampling a loss from a distribution of probe tasks g _. Then
plasticity can be defined as:

P(0;) =b—Epr[€(07)] where 07 = O(6;,£)

Desiderata checklist

Depends on the optimization algorithm {4

Is higher when the network can quickly learn new things, and lower when it cannot

Looks at changes in the outputs of the network, not its internal structure

Depends on the class of new tasks we want the network to be able to learn

P(0;) =b—Eyor[£(07)] where 07 = O(0, ¢)

Desiderata checklist

Depends on the optimization algorithm {4

Is higher when the network can quickly learn new things, and lower when it cannot [4

Looks at changes in the outputs of the network, not its internal structure

Depends on the class of new tasks we want the network to be able to learn

P(0;) =b— Eyor[£(07)] where 07 = O(6, ¢)

Desiderata checklist

Depends on the optimization algorithm {4

Is higher when the network can quickly learn new things, and lower when it cannot |4

Looks at changes in the outputs of the network, not its internal structure |4

Depends on the class of new tasks we want the network to be able to learn

P(0;) =b—Eyor[£(0))] where 07 = O(6, ¢)

Desiderata checklist

Depends on the optimization algorithm {4

Is higher when the network can quickly learn new things, and lower when it cannot |4

Looks at changes in the outputs of the network, not its internal structure |4

Depends on the class of new tasks we want the network to be able to learn 4

P(0;) =b—Epr[£(07)] where 0 = O(6,)

Expected vs empirical risk minimization

U x(0) = Eonx[(f(0,%) — 9u(x))”]

What distribution X do we want to draw from?

Want to ensure that the network can minimize the loss on its training data.

Also want the network to generalize well to new inputs.

This talk will focus on convergence on training data.

Y

Faces of
plasticity loss

Warm starting

Observed in 2019 in the context of
“warm-starting” neural network training.

Pre-training on half of CIFAR-10 for several
epochs results in worse generalization than
training on the whole dataset from the start

Ash & Adams, 2019

(o) B~ I © o B (o]
o o o o

Ul
o

Test Accuracy

warm start random

20+ - . - - ' , -
0 5 10 15 20 25 30 35
Number of Samples (thousands)

Implicit Under-parameterization

Observation that the effective rank of the feature embeddings tends to decline over time, corresponding to
performance and feature collapse.

Agarwal et al,, 2020

GridWorld Asterix Seaquest Ant-v2
400 : 2004
» — DQN — SAC
. _ 400 —— DQN (4x data) ~
g g 3009 g 1501
Il 1 3001 <
& S 200 % 100/
= 3 200 ™
E Supervised 5 E
- == u Vi - 100 = 501
T % 100 DN e
— T=200 —— DQN (4x data)
10 04 ; : 01 : 01y
100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 200 400
10-———————————————
== Supervised 6000 1000
& &
0.8 — T=10
i — T=200 £ £
8 2 2 01
506 8 40001 8
i a &
= 0.4 g & —1000
£ o 2000]
= > >
302 < <
—2000
0.0 : : : : : 0 : s i—— : :
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 200 400
Fitting Iterations Gradient Updates (x62.5k) Gradient Updates (x62.5k) Gradient Updates (x 8k)

= = =
o o o
A 4 b

MSE on random targets
S

Capacity Loss

Observation that in some cases, training a neural network on a sequence of tasks makes it harder to learn on
new tasks — even if the new tasks are drawn from the same distribution as what the network was trained on.

amidar pong
10—2]
W
[10—3 4
W o W
—_— DQN 10_5_ M
—— QR-DQN
—— Rainbow
10764,

0 10 20 30 40 50
Millions of frames

10 20 30 40 50
Millions of frames

Lyle et al., 2021

Mean squared error

Target-fitting error over iterative tasks

1.0

0.8

0.6

0.4

0.2

0.0

—— 32x2 MLP — 64x2 MLP 128x2 MLP
— 32x3 MLP 64x3 MLP ~ —— 128x3 MLP
= O —
v v
_ﬂ _/,\/

0 5 10 15 20
Target iterations

400

200

Episode Return

The Primacy Bias

Early training data has outsized impact on
generalization and inductive biases

Network resets in deep RL can boost performance

Related to “critical learning periods” in visual
system

0.00

Nikishin

hopper-hop

o

0.25 0.50 0.75 1.00
Environment Steps (X 10%)

—— SAC

et al, 2022

humanoid-run

250
200
150
100
50
0

0.00 0.25 0.50 0.75
Environment Steps (X 10°)

——— SAC + resets]

Pretraining target

Fine-tuned predictions

1.00

Low-frequency sinusoid

311

£2RTRXIRTERCE LN LY

Test accuracy

Lyle et al,, 2022

High-frequency sinusoid

Achille et al,,

Deficit

N-step returns (N=200)

S2SELELENEIYYETa.,

BE3EEA

2017

Normal training

‘AN BemELIBE
2 74

-

D%

I
]
I
I
1

0 2 40 60 & 100 120 140
Deficit removal (epoch)

Age (days)

©) Google DeepMind

2

Mechanisms of
plasticity loss

Model organisms of plasticity loss

Two models of non-stationary learning

T=1 T=2
1. (Re-)randomized label memorization
a. Models sudden, drastic changes ﬁ ' ;fa
in the task ' ‘ ' o
f(x)=1 f(x)=2 f(x)=6 f(x)=6

. . e S’ ~ Unif(CIFAR10
2. Q-learning on an image classification ()

“MDP”

a. Non-stationarity implicitly
induced by target network
updates

Two models of non-stationary learning

1. (Re-)randomized label memorization
a. Models sudden, drastic changes in the task
b. Simulates noisy or hard-to-learn relationships in the real world that
network may have to quickly adapt to.
c. Amenable to both classification and regression losses

T=1 T=2

PN e | PN o=

()21 f(x)=2 Hx)=6 f(x)=6

Classification as an MDP

2. Q-learning on an image classification “MDP”

a.
b.
C.

Non-stationarity implicitly induced by target network updates

Very dense-reward

Can consider variations where e.g. rewards correspond to random
labels (so must be memorized), or where rewards are only given for a
subset of classes

No exploration confounding — can even collect data using hand-coded
optimal policy

More natural form of nonstationarity

S’ ~ Unif(CIFAR10)

Problem 1: accumulating saturated units

Networks tend to accumulate dead
units

Can be hard to undo because no
gradients

Have to hope that the preceding
layer features eventually
accidentally wander back into a
regime with positive dot product

----- Accuracy

Fraction
~ dead units

Problem 1: accumulating saturated units

Networks tend to accumulate dead
units

Can be hard to undo because no
gradients

Have to hope that the preceding
layer features eventually
accidentally wander back into a
regime with positive dot product

----- Accuracy

Fraction
~ dead units

Problem 1: accumulating saturated units L
o

Networks tend to accumulate dead
units

Can be hard to undo because no
gradients

Have to hope that the preceding
layer features eventually
accidentally wander back into a
regime with positive dot product

----- Accuracy

Fraction
~ dead units

Problem 1: accumulating saturated units
Not a huge problem in single-task setting

BUT a big problem when the correlations between Optimizer Instability

—= . == 1.0
features and targets change. £ 0.8 \
5 -0.8
g 0.6 T a
Network can accidentally go overboard and kill off 3 04 0-6 ¢
activations o 0.4 9
c T
0.2
Q F0.2
Exacerbated by adaptive optimizer step size * 0.0 - 0.0
0 15000 30000 45000 60000 75000 90000
—— dead units (default) task boundary — = accuracy (default)
dead units (tuned) accuracy (tuned)

A

iz

:Q{A —
VO +HE+ €

Uy

Problem 2: difficulty navigating loss landscape

Learning curve on new probe task
after 100 iterations of RL training

Learning curve evoluyén over time

+J
% 0.5 . —— jteration 0
E ‘_' —— iteration 10
+ 0.47 - jteration 20
S 0.3 - —— iteration 50
8 ' iteration 100
C 0.2
(@)
o 0.1
3

0.0 T —

500 750 1000 1250 1500 1750 2000
Optimizer steps

0 250

Learning curve on new probe task of
random initialization

Problem 2: difficulty navigating loss landscape

But why is the loss landscape
getting harder to navigate?

Partially due to nature of
learning problem: regression on
large target is hard for neural
networks

But seems to also be driven by
something more fundamental —
see similar issues even in
classification tasks

Loss landscape curvature

Initialization After 5 target updates

0.47 "." —— Gradient descent
038 | i Brownian motion
£ | }
§ 0.2 9 I‘ 1

0.1 “ | '\

|)‘| ‘| \(ﬁ\
0.0{ -] /|

0 10 20 30 40 50 O 10 20 30 40 50
Eigenvalue A Eigenvalue A

Gradient Covariance

Gradient Descent Brownian Motion Gradient Descent Brownian Motion
1 Iteration 1 Iteration 20 lterations 20 Iterations

E m .. ," %

il =

Correlates of plasticity

Are there easy-to-measure properties of a network that
correlate with plasticity, and which we can intervene on to
improve the network’s adaptability to new tasks?

A good explanation of plasticity should be consistent under
different experimental settings.

Correlates of plasticity

Are there easy-to-measure properties of a network that
correlate with plasticity, and which we can intervene on to
improve the network’s adaptability to new tasks?

A good explanation of plasticity should be consistent under
different experimental settings.

Consider several candidate causal factors in plasticity loss:

1. Weight norm

2. Weight rank

3. Number of dead units

4. Numerical rank of feature embeddings.

Plasticity loss

Correlates of plasticity

Test several candidate causal factors in plasticity loss:

1. Weight norm X

2. Weight rank X

3. Number of dead units)X

4. Numerical rank of feature embeddings.)X

Falsification of explanations of plasticity

Varying observation space Varying observation space Varying architecture Varying reward function
- 06
05 .- - cifarl0 0.3 . cifarl0 cnn 0.05 easy
0.4 mnist e mnist e mlp e hard
o %o s 0.4 0.04 - e sparse
0.3 0.2 e
° £ 0.03
0.2 ® g 2
0.1 >—< % R4 L, 1:02
0.1 ! _ . , $
" » o L5
0.0 oo Mo o 0 o ® 0.0) ® 00Q © ' 0.0 - e o og, 0.01 —
250 500 750 1000 1250 1500 7300 350 400 450 500 0 100 200 300 400 10 20 30

Weight norm Weight rank Dead units Feature rank

66

Trainable
networks are all
alike; every
untrainable
network is
untrainable in its
own way.

©) Google DeepMind

How to
maintain
plasticity

Caveat: trade-offs

- Learning systems face a

- To maintain plasticity, could Pareto frontier
frequently re-initialize the entire
network
>
et
=
- However, also want to be able to ©
take advantage of things the n
network has learned so far

* Reset parameters every 10

- Plasticity is also likely in tension Plasticity optimizer steps

with catastrophic forgetting (out
of scope of this talk)

Caveat: trade-offs

- Learning systems face a

- To maintain plasticity, could Pareto frontier
frequently re-initialize the entire
network
>
et
=
- However, also want to be able to © x
. +—
take advantage of thlngs the p) Gradient descent
network has learned so far

* Reset parameters every 10

- Plasticity is also likely in tension Plasticity optimizer steps

with catastrophic forgetting (out
of scope of this talk)

Caveat: trade-offs

- Learning systems face a

3

- To maintain plasticity, could Pareto frontier
frequently re-initialize the entire

network /

- However, also want to be able to x

take advantage of things the Gradient descent
network has learned so far

Stability

* Reset parameters every 10

- Plasticity is also likely in tension Plasticity optimizer steps

with catastrophic forgetting (out
of scope of this talk)

Three simple fixes

Bigger networks

Scale is beneficial for a variety of
reasons — easier to smoothly
interpolate, more expressive in
general

Stable architectures

Use architectural tricks
(normalization, residual
connections, etc.) known to make
optimizers behave better.

Nicer parameterizations

Choose parameterizations of the
learning problem that are
scale-invariant and induce nice
loss landscapes

Solution 1: get a bigger network

Effect of network width on plasticity loss

target update period : 1 target update period : 100 target update period : 1000

_.1 _1_ \ _1.
%))
822 ~2- \ =
29 \
S o A -3 -
2o 3] =3 N— —— mlp on mnist
g = ——— cnn on mnist
“4] mlp on cifarl0
=4 =4 cnn on cifarl0
. . ; : = . .
5 10 5 10 5 10
multiplier multiplier multiplier

Larger networks lose plasticity less. However, need extremely overparameterized networks for this to work, and
size of network needed scales with problem complexity.

Solution 2: use a more stable architecture

Iteration 10
default

Iteration 10
default

freeway
Iteration 100 Iteration 10 Iteration 100
default layernorm layernorm
0 0 0 —
10 10
20
30
40
50
60
tennis
Iteration 100 Iteration 10 Iteration 100
default layernorm 6 layernorm
E
2
&

Return

20

10

Training performance

i | — default
layernorm

naré\e this_game

0 50 100 150 200

Iteration

Training performance

— default
layernorm

0 50 100 150 200

Iteration

enduro
space_invaders
wizard_ of wor

video plnball
Tasterix

defender
zaxxon
time_pilot
surround
bank_heist
jamesbond
phoenix
tutankham
alien
riverraid

freewa:
krull

emon_attack
“boxing
chopbper

crazy_climber
fishing_derby
seaquest
kung_fu_master
road_runner
ms_pacman
‘breakout
berzerk
skiing
beam_rider
private_eye
yars_revéenge
hero

star_gunner
frostbite
asteroids
ice_hockey
solaris
pitfall
battle_zone
montezuma
gravitar
robotank
pong
amidar
assault
kangaroo
atlantis
venture

bowlin --8.7

double_dunk {EEEG————-52. 4%
=25 0 25

50

75

100

125

150

Solution 3: re-parameterize the
learning objective

Softmax cross-entropy has nice

bounded gradients (w.r.t. logits), and is
translation-invariant w.r.t. the scale of the BN ... 0.2 0.0- 000 (020001 REEREE reset st toyer | 0.2 < 001 ETEENTTOTS
support of the distribution weioht decey TR UR P

Effect of interventions on initial target-fitting loss (catego Effect of interventions on initial target-fitting loss (regres

weight decay -JUERFE 0.3 M 023 +0.08 027 +0.20

1 m spectral normalization - 027 £0.11 0.26 + 0.12 spectral normalization - 0.18 £ 0.18 | 0.28 = 0.26
A layernorm - 0.02 £0.05 0.10 £ 0.07 layernorm - 0.04 £0.13 0.17 £ 0.28
L — y ° 10)
'I, 'I, BULIEUNEELAGE 0.07 + 0.06 0.13 +0.07 022 +0.10 020 *0.11 shrink and perturb +0.10 EPIERSERN P EN R
3
m resnet transformer mip resnet transformer cnn mip
=1
Effect of interventions on final target-fitting loss (categor Effect of interventions on final target-fitting loss (regress
[GLIESAEWEE 021 £ 0.12 0.15+0.08 0.20+0.13 025+ 0.09 reset last Iayer 0.41 £0.01 0.79 £ 0.30 0.39 £ 0.09

Re-parameterizing network output this
way resolves a lot of optimization issues
that come up from having increasing
targets in RL.

DL RN LSRN 0.19 + 0.04 0.24 £ 0.09 0.29 +0.08 weight decay 0.45 £ 0.06 0.48 +0.08 0.58 +0.20

spectral normalization - 0.33 £ 0.12 spectral normalization - 0.58 = 0.18 0.68 *+ 0.26

layernorm - 0.04 £ 0.05 0.18 £ 0.07 layernorm - 0.60 = 0.28

FUUGIERL RIS ITGE 0.13 + 0.06 026 £0.07 030010 029 %011 shrink and perturb - 0.66 + 0.21 0.49 £0.10 0.62 +0.13 0.62 +0.17

' | ' '
resnet transformer resnet transformer cnn mip

©) Google DeepMind

Fun solutions

“Trivial” solution (Igl, Farguhuar, Whiteson; 2023)

Reset the entire network!
Not actually trivial: have to figure out how to get the re-initialized parameters back up to speed quickly.

0.70 —_— 10 —
— PPOHTER| : : : : 1.0 I PPO+ITER — PPOHITER |:
0.65H — ppo 2§ e — st/ — pro g |
0.60 | S A - 0.8 1 = E P
0.55} Q
E 2 0.6
£ 0.50}F]
045} 2 0.4
040}
0.35] ez
0.30 , W ; By i il A .
00 05 10 15 20 25 30 0.0- 0.0 0.2 0.4 0.6 0.8 1.0

Steps 1e8 1 room 2rooms 3rooms 4 rooms Steps 1e9

(a) Multiroom (b) Multiroom, by layout (c) Boxoban

1000

800

600

400

Episode Return

200

400

200

Episode Return

0

Resetting a single layer

(Nikishin*, D'Oro*,

Schwarzer*, et al; 2023)

Lazier version: just reset individual layers (usually the last one).

Not as crazy as it sounds — c.f. “Are all layers created equal?” (Zhang et al., JMLR 2022).

0.00

cheetah-run

hopper-hop

0.25 0.50 0.75 1.00
Environment Steps (X 106)

— SAC

finger-turn_hard

1000
750

500

humanoid-run

0.00 0.25 0.50 0.75
Environment Steps (X 10%)

SAC + resets]

1.00

SPR + resets

SPR

DrQ(e)

DER I
CURL I

0.15

0.30
IQM

0.45

Adding another network

Rather than resetting the network and
starting from scratch, freeze network
and sum the outputs of frozen + freshly
initialized networks.

Number of trainable parameters stays
constant, but effective capacity is
increased.

Can allow DQN agents to break through
plateaus in atari.

Space invaders
5000

n
B
o
o
o

Episode retur
= N w
o o o
o o o
o o o

0 | 1

25000
20000
15000
10000
5000
0

0 25 50 75 100125150175 200

Environment frames (millions)

|
|
|
|
|
|
I
I
|
|

Nikishin, Oh, Ostrovski, L, Pascanu,
Dabney, Barreto, 2023

ho() ho(z) + hyy () — by ()
4 i 4 4
) OO0
¥ Plasticity njection =} ——"""
¢(f) — ¢({E>
=l=

0 25 50 75 100125150175 200
Environment frames (millions)

Resetting units

Resetting units which aren't “useful” (for some notion of utility)
can improve robustness of RL algorithms in nonstationary
tasks.

Can use an even simpler heuristic: reset a ReLU unit if it is zero
on all inputs.

Leads to significant performance improvements in online,
value-based RL agents trained on Atari domain.

(Dohare, Sutton, & Mahmood; 2022)

2100,

1800+
16001
1400+

Continual-PPO

Undiscounted PO+L2
episodic
return 7001
(30 runs) PPO

0 50M 100M
Time step

(Sokar, Agarwal, Castro, Evci, 2023)

50.6| = DoN

@ | —e— DQN + ReDo .——/\/‘
§ 0.4 DQN + Reset

S | —*— DQN +wD

E =
0.2

=2

=

©0.0

2 4 6 8 10
Number of Frames (in millions)

Picking better activation functions

Abbas, Zhao, Modayil, White,
& Machado. 2023

Using concatenated RelLU rather than ReLU activations improves robustness in RL agent trained on a sequence
of different Atari games and levels.

400

Avg. Score
per Episode
N
o
o

CRelLU Continual

Mode 0

ReLU Continual

700

300

100

Mode 4

200

Avg. Score
per Episode

Iteration

Mode 20

200

0 2040

400

100

Iteration

Mode 24

200

0 2040

Iteration

200

0 2040

Iteration

200

Mode 8 Mode 12 Mode 16
400 400 200
200 200
1
100 100 0
0 2040 200 0 2040 200 0 2040 200
Iteration Iteration Iteration
Mode 28 500 Mode 32 Mode 36
200 800
400
150
100 500
200
300,
0 2040 200 0 2040 200 0 2040 200
Iteration Iteration Iteration

. . L, Rowland, Dabney,
Feature regularization 2022

Regress random projections of features back to the value they had at initialization.

Avoids representation collapse, but may limit degrees of freedom during optimization.

MLP Network Loss on
(b) Iterative Regression Task (C) 3 le3
Q(x:6:) 4 . 5 0.6
“lrp(Q(x;0:),a,x",r) £
v g 05
- =21
2% 0.4 = s
= L i~
2% 03 2 i
28 02 ©34 i
| wlvet . 2 2
3 01 i
‘ = 0-0 ol j ./‘§'/,\A/.v'_.l;:7‘[:.\‘31
)y binrer (8(X; 00), 8(X: o) "0 5 10 15 20 25 30 0 50 100 150 200
Target iteration Millions of frames
—— Regression - |nFeR DDQN == Rainbow

== DDQN+InFeR - == Rainbow+InFeR

©) Google DeepMind

4 What's next

Implications for large models

e Bigger models exhibit less plasticity »
loss g,

e Harder tasks induce more plasticity
loss

e Unknown whether large language
models are big enough to not =Y
exhibit plasticity loss on all ==
economically relevant tasks that !
might require continual learning

Implications of pre-training, and for fine-tuning

e Some plasticity loss is probably desirable if it
improves domain-relevant performance

e Pre-training on sufficiently diverse data
unlikely to reduce plasticity on the training
domain

e However, fine-tuning on a sequence of many
datasets might present a problem if the
network loses plasticity over time

Theoretical understanding

e Still don't have a great theoretical model of plasticity or
trainability

e Signal propagation perspectives from neural network
initialization are data-agnostic, don't reflect data
dependence we see in practice

e Possible connection to other findings on learning
dynamics in supervised learning?

Characterizing trade-offs

Don't have a fine-grained model of which tasks
require plasticity loss and which don't

Plasticity loss that arises from increased
compression may be necessary for
generalization

Suggests there may be fundamental tradeoffs
between plasticity and efficiency/generalization

)
X
Y g W -5
T =

/
—

SR -
T
-~ — - J .\\-‘ ,' & .'4
S

S

B

o

r
|
\'-'{3
)

Conclusions

So what have we learned?

1. Plasticity loss is observed in a variety of contexts where non-stationary training

dynamics occur

2. Atleast in extreme cases, this can prevent agents from improving their

performance
3. A variety of promising approaches exist to reduce the loss of plasticity

4. But we don't have a way of avoiding the need to eventually reset the network, i.e. we

can’t avoid plasticity loss entirely yet.

Thanks!

