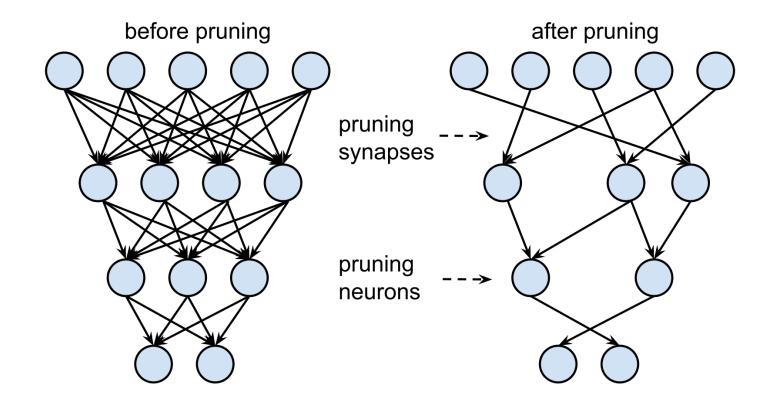
A Simple and Effective Pruning Approach for Large Language Models

Mingjie Sun Carnegie Mellon University

Joint work with Zhuang Liu, Anna Bair, Zico Kolter

Network Pruning

A popular approach for compressing neural networks.



Network Pruning

ICLR 2019 best paper award.

Published as a conference paper at ICLR 2019

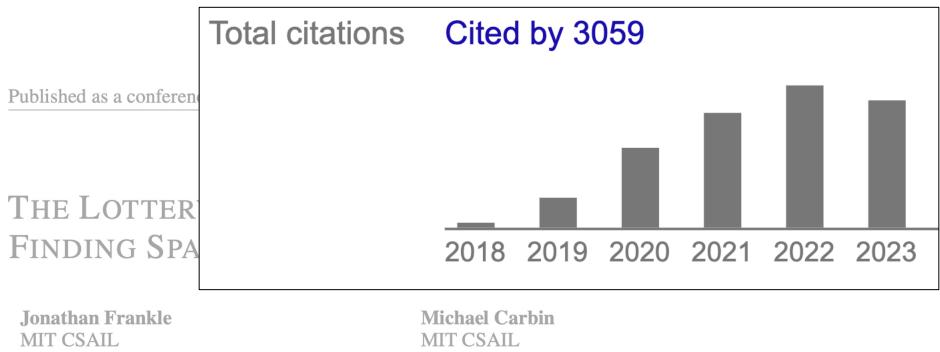
THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle MIT CSAIL jfrankle@csail.mit.edu Michael Carbin MIT CSAIL mcarbin@csail.mit.edu

Network Pruning

Huge research interest.

jfrankle@csail.mit.edu



mcarbin@csail.mit.edu

Behind the success

Magnitude Pruning: remove weights with smallest magnitudes.

Behind the success

Magnitude Pruning: remove weights with smallest magnitudes.

A simple but tough to beat baseline

The State of Sparsity in Deep Neural Networks

Trevor Gale^{*1†} Erich Elsen^{*2} Sara Hooker^{1†}

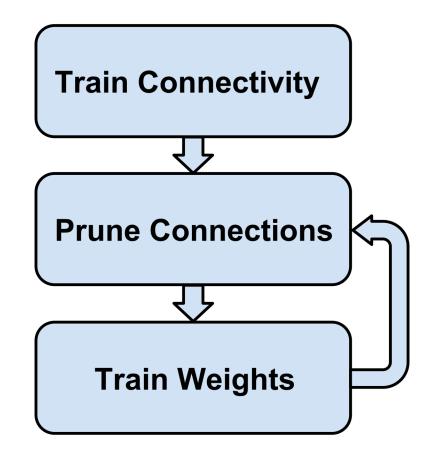
WHAT IS THE STATE OF NEURAL NETWORK PRUNING?

Davis Blalock^{*1} Jose Javier Gonzalez Ortiz^{*1} Jonathan Frankle¹ John Guttag¹

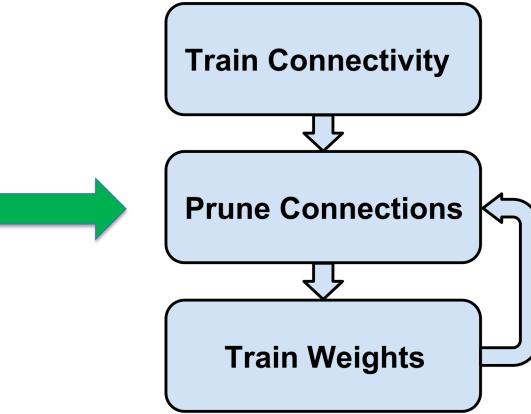
- Type of pruning:
 - Unstructured Pruning
 - Structured Pruning

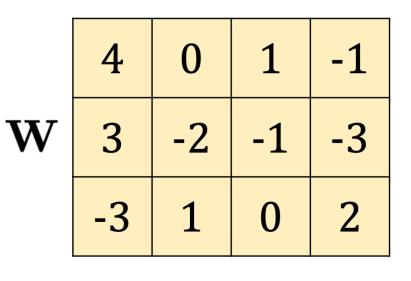
- Type of pruning:
 - Unstructured Pruning
 - Structured Pruning

- Type of pruning:
 - Unstructured Pruning
 - Structured Pruning
- Pruning procedure



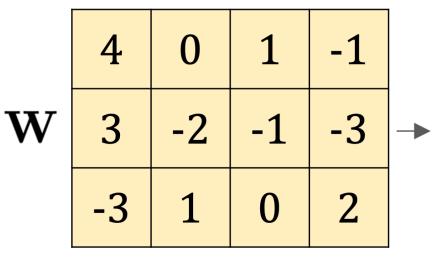
- Type of pruning:
 - Unstructured Pruning
 - Structured Pruning
- Pruning procedure





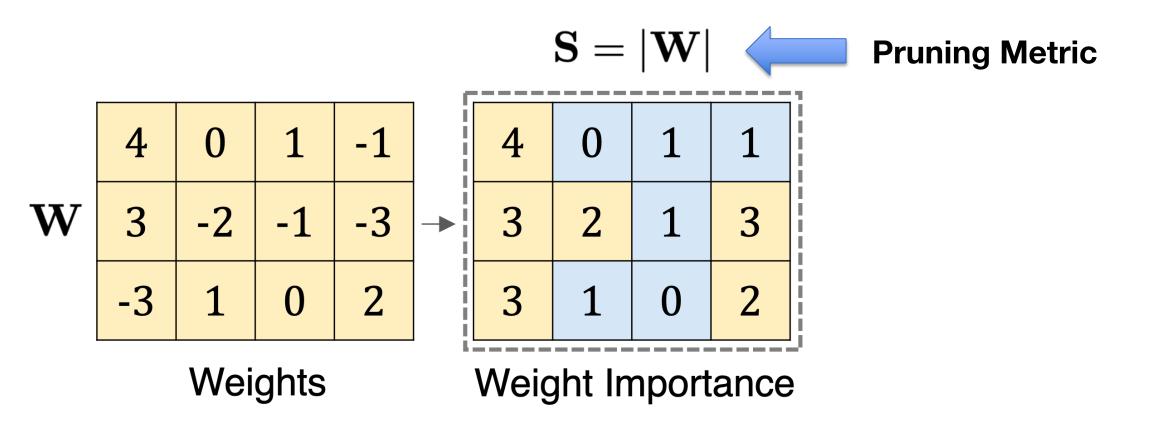
Weights

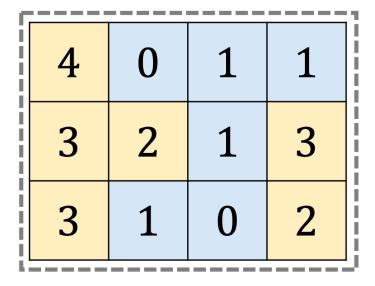
11



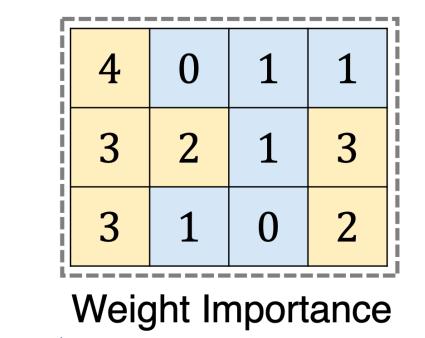
Weights

12



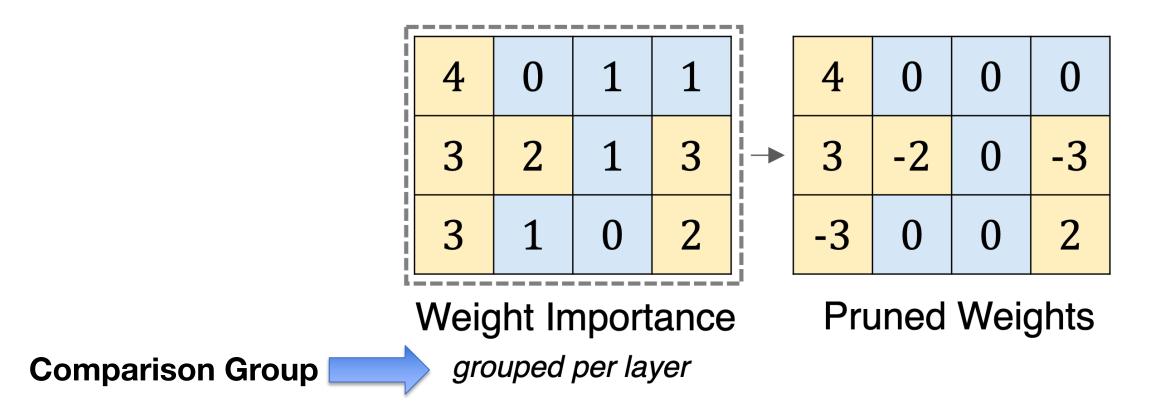


Weight Importance

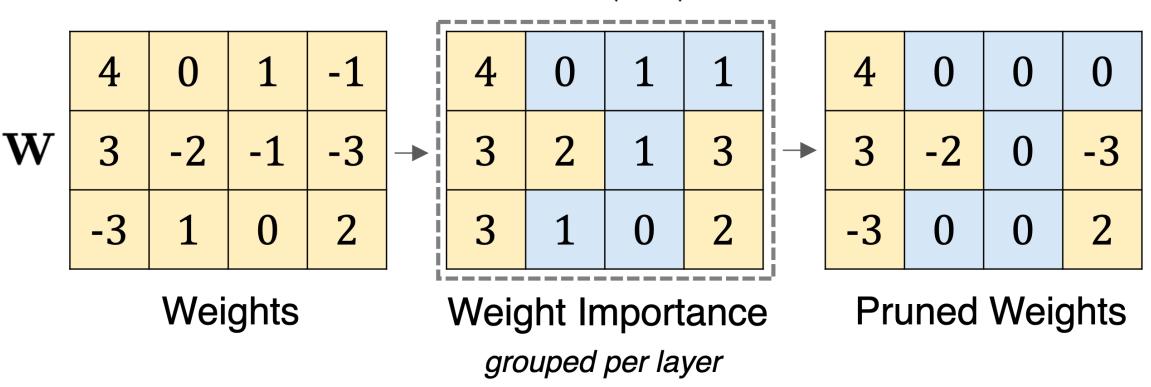


grouped per layer

Comparison Group



 $\mathbf{S} = |\mathbf{W}|$



ImageNet Accuracy		WikiText Perplexity	
Magnitude Pruning	ConvNeXt	LLaMA-7B	
#Params	89M	7B	
Dense	83.8%	5.68	
50% sparsity			

	WikiText Perplexity	
Magnitude Pruning	ConvNeXt	LLaMA-7B
#Params	89M	7B
Dense	83.8%	5.68
50% sparsity 82.4%		17.29

Significant performance drop.

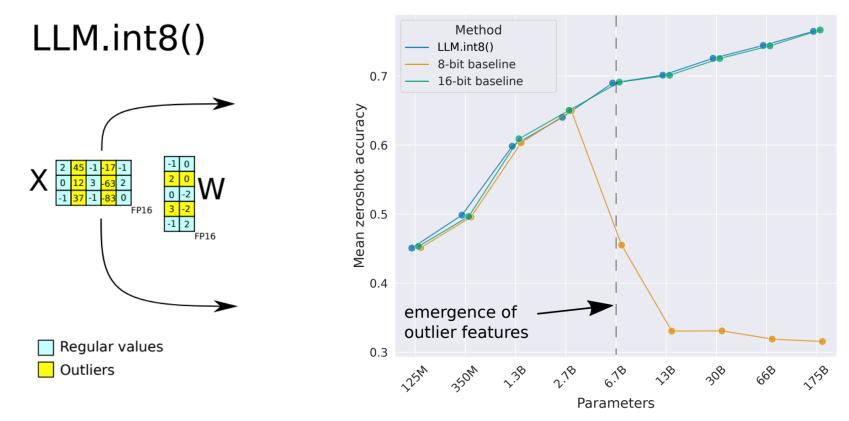
WikiText perplexity	Dense	10%	20%	
OPT-13B	10.13	14.45	9e3	
		Explodes at 20% sparsity!!		

Large language models, despite having 100x or 1000x more parameters, are significantly harder to prune directly.

Large language models, despite having 100x or 1000x more parameters, are significantly harder to prune directly.

A Missing Ingredient

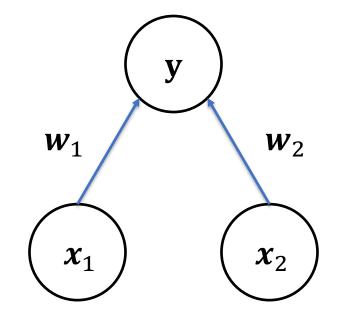
Outlier features affect quantization performance severely in large language models.



LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. Dettmers et al, 2022.

Activations matter in network pruning

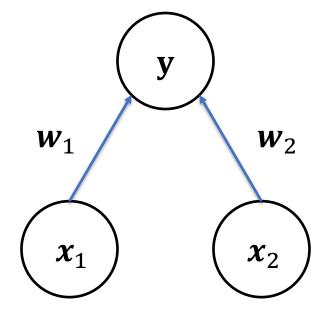
Consider a neuron with two inputs.



Activations matter in network pruning

Magnitude Pruning:

always remove w_1 , assume $|w_1| < |w_2|$

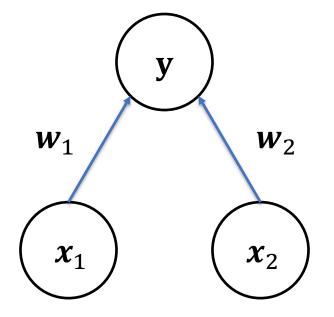


Activations matter in network pruning

Magnitude Pruning:

always remove w_1 , assume $|w_1| < |w_2|$

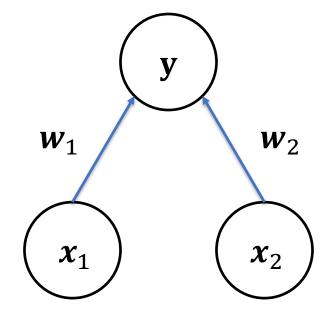
What if x_1 and x_2 differ significantly in scale?



Limitations of Magnitude Pruning

Limitations of Magnitude Pruning:

No considerations of activations.

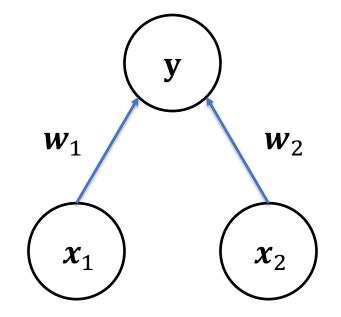


Limitations of Magnitude Pruning

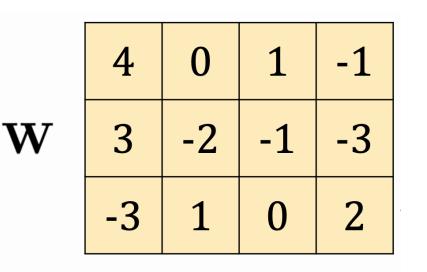
Limitations of Magnitude Pruning:

No considerations of activations.

Activations are just as important as weights.



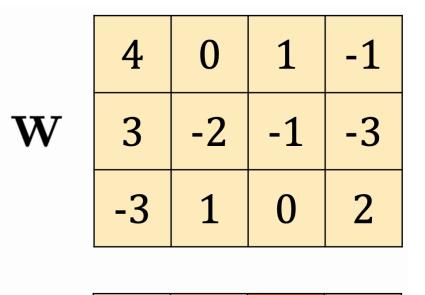
Our method

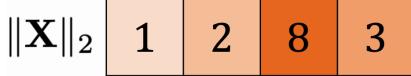


We propose Wanda: Pruning by Weights and activations.

Next we show how Wanda would prune this weight.

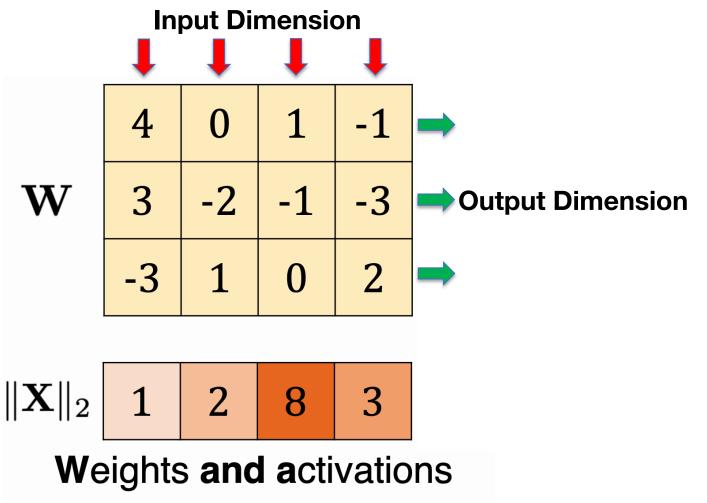
Weights and Activations



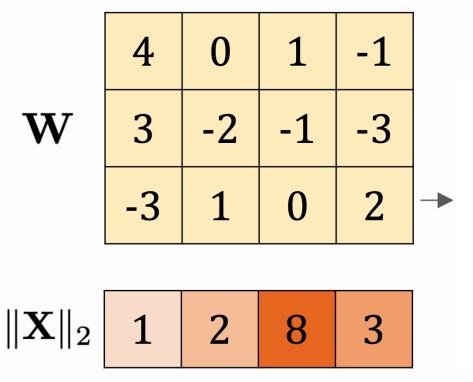


Weights and activations

Weights and Activations



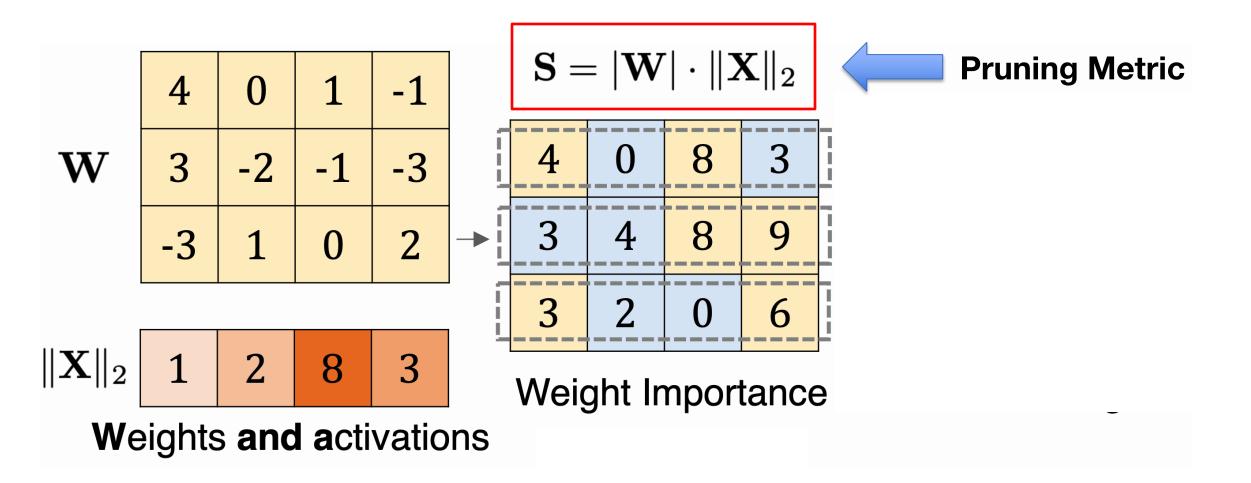
Part 1: Pruning Metric



$$\mathbf{S} = |\mathbf{W}| \cdot \|\mathbf{X}\|_2$$
 Pruning Metric

Weights and activations

Part 1: Pruning Metric



Another line of work

Core of GPTQ and SparseGPT:

Layer-wise reconstruction!

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al, 2023. SparseGPT: Massive Language Models can be accurately pruned in one-shot. Frantar et al, 2023.

Another line of work

Core of GPTQ and SparseGPT:

Layer-wise reconstruction!

 $\operatorname{argmin}_{\widehat{\mathbf{W}}} ||\mathbf{W}\mathbf{X} - \widehat{\mathbf{W}}\mathbf{X}||_2^2$

Quantized/Sparse weights.

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al, 2023. SparseGPT: Massive Language Models can be accurately pruned in one-shot. Frantar et al, 2023.

Another line of work

Effect of removal can be characterized by:

$$\mathbf{S}_{ij} = \left[|\mathbf{W}|^2 / \operatorname{diag} \left((\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \right) \right]_{ij}$$

Another line of work

Reduction inspired from Optimal Brain Damage (OBD):

$$\mathbf{S}_{ij} \stackrel{\lambda=0}{=} \left[|\mathbf{W}|^2 / \text{diag} \left((\mathbf{X}^T \mathbf{X})^{-1} \right) \right]_{ij}$$

Another line of work

Reduction inspired from Optimal Brain Damage (OBD):

$$\mathbf{S}_{ij} \stackrel{\lambda=0}{=} \left[|\mathbf{W}|^2 / \operatorname{diag}\left((\mathbf{X}^T \mathbf{X})^{-1} \right) \right]_{ij} \stackrel{\text{diagonal}}{=} \left[|\mathbf{W}|^2 / \left(\operatorname{diag}(\mathbf{X}^T \mathbf{X}) \right)^{-1} \right]_{ij} = \left(|\mathbf{W}_{ij}| \cdot \|\mathbf{X}_j\|_2 \right)^2$$

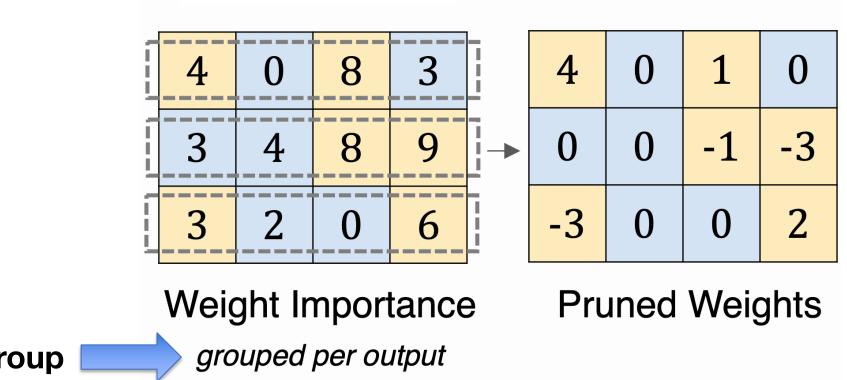
Dropping off-diagonal elements in Hessian.

Part 2: Comparison Group

Compare and remove weights locally inside each output neuron.

Pruning per output

Compare and remove weights for each output neuron.



Comparison Group

Part 2: Comparison Group

Counter-intuitive.

Better than layer-wise comparisons for LLMs.

		OPT						
Comparison Group	Sparsity	125m	350m	1. 3B	2.7B	6.7B	13B	
per layer	50%	46.95	38.97	22.20	22.66	15.35	13.54	
per output	50%	38.96	36.19	19.42	14.22	11.97	11.42	

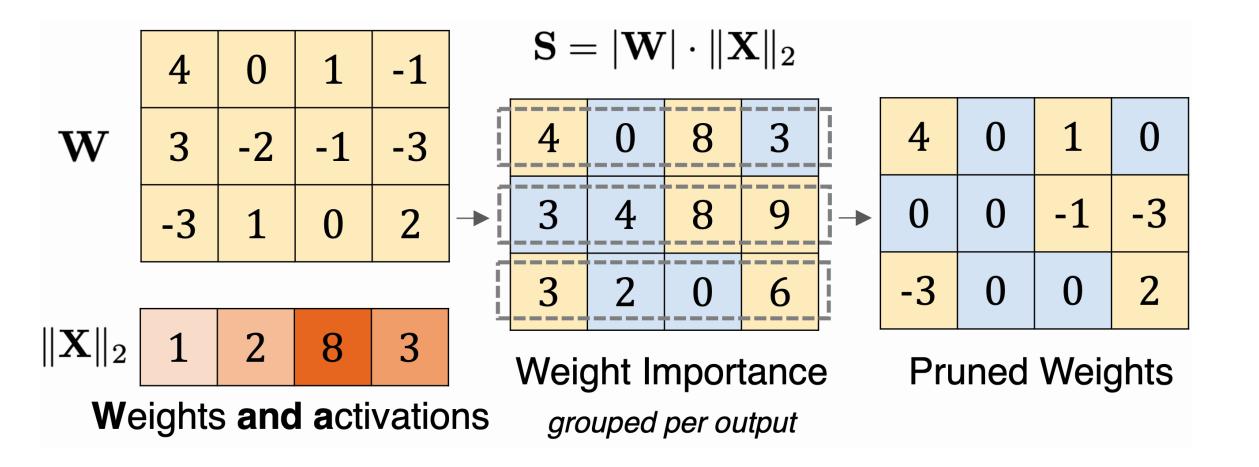
Part 2: Comparison Group

Counter-intuitive.

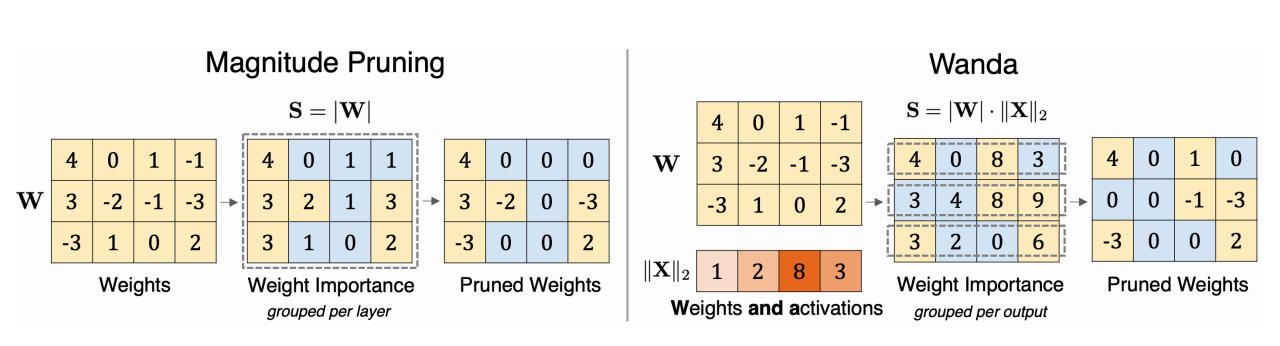
Better than layer-wise comparisons for LLMs.

		OPT						
Comparison Group	Sparsity	125m	350m	1.3B	2.7B	6.7B	13B	
per layer	50%	46.95	38.97	22.20	22.66	15.35	13.54	
per output	50%	38.96	36.19	19.42	14.22	11.97	11.42	

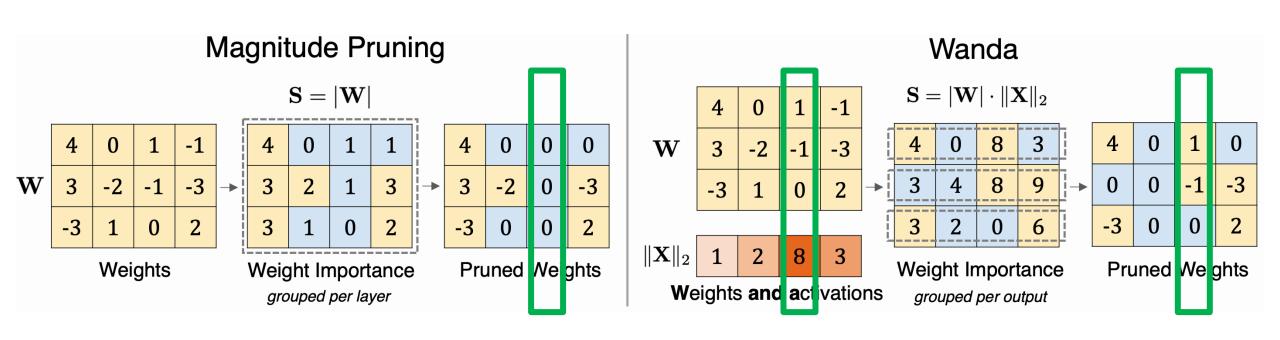
Putting it all together



Comparison



Comparison



Wanda can preserve outlier features.

In Practice

Algorithm 1 PyTorch code for Wanda

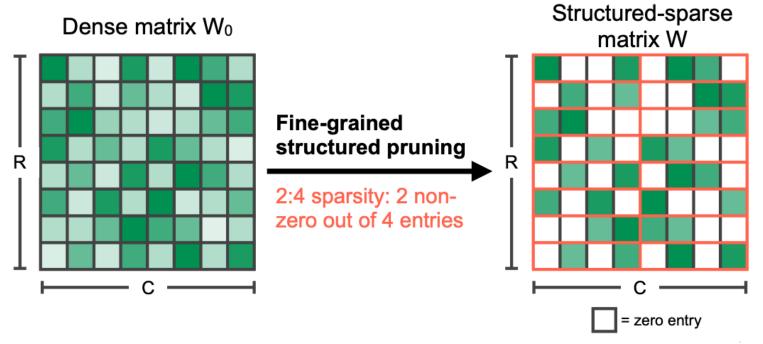
```
# W: weight matrix (C_out, C_in);
# X: input matrix (N * L, C_in);
# s: desired sparsity, between 0 and 1;
def prune(W, X, s):
  metric = W.abs() * X.norm(p=2, dim=0)
  _, sorted_idx = torch.sort(metric, dim=1)
  pruned_idx = sorted_idx[:,:int(C_in * s)]
  W.scatter_(dim=1, index=pruned_idx, src=0)
```

return W

Structured N:M Sparsity

Definition: At most N non-zeros in every contiguous group of M weights.

In practice, 2:4 and 4:8 sparsity.



Accelerating Sparse Deep Neural Networks. Mishra et al, 2021

Zero-Shot

			_	LLaMA]	LLaMA-2	2
Method	Weight Update	Sparsity	7B	13 B	30B	65B	7B	13 B	70B
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08

Zero-Shot

				LLaMA				LLaMA-2		
Method	Weight Update	Sparsity	7B	13 B	30B	65B	7B	13B	70B	
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08	
Magnitude	×	50%	46.94	47.61	53.83	62.74	51.14	52.85	60.93	
Wanda	×	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03	
Magnitude	×	4:8	46.03	50.53	53.53	62.17	50.64	52.81	60.28	
Wanda	×	4:8	52.76	56.09	61.00	64.97	52.49	58.75	66.06	
Magnitude	×	2:4	44.73	48.00	53.16	61.28	45.58	49.89	59.95	
Wanda	×	2:4	48.53	52.30	59.21	62.84	48.75	55.03	64.14	

Consistently better than magnitude pruning.

Zero-Shot

				LLaMA				LLaMA-2		
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B	
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08	
SparseGPT	\checkmark	50%	54.94	58.61	63.09	66.30	56.24	60.72	67.28	
Wanda	×	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03	
SparseGPT	\checkmark	4:8	52.80	55.99	60.79	64.87	53.80	59.15	65.84	
Wanda	×	4:8	52.76	56.09	61.00	64.97	52.49	58.75	66.06	
SparseGPT	\checkmark	2:4	50.60	53.22	58.91	62.57	50.94	54.86	63.89	
Wanda	×	2:4	48.53	52.30	59.21	62.84	48.75	55.03	64.14	

Wanda performs competitively against SparseGPT.

Perplexity

				LLaMA				LLaMA-2		
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B	
Dense	-	0%	5.68	5.09	4.77	3.56	5.12	4.57	3.12	
Magnitude	×	50%	17.29	20.21	7.54	5.90	14.89	6.37	4.98	
SparseGPT	\checkmark	50%	7.22	6.21	5.31	4.57	6.51	5.63	3.98	
Wanda	×	50%	7.26	6.15	5.24	4.57	6.42	5.56	3.98	
Magnitude	×	4:8	16.84	13.84	7.62	6.36	16.48	6.76	5.54	
SparseGPT	\checkmark	4:8	8.61	7.40	6.17	5.38	8.12	6.60	4.59	
Wanda	×	4:8	8.57	7.40	5.97	5.30	7.97	6.55	4.47	
Magnitude	×	2:4	42.13	18.37	9.10	7.11	54.59	8.33	6.33	
SparseGPT	\checkmark	2:4	11.00	9.11	7.16	6.28	10.17	8.32	5.40	
Wanda	×	2:4	11.53	9.58	6.90	6.25	11.02	8.27	5.16	

Method	10%	20%	30%	40%	50%
Magnitude	14.45	9e3	1e4	1e4	1e4
Wanda	10.09	10.07	10.09	10.63	11.42

Method	10%	20%	30%	40%	50%
Magnitude	14.45	9e3	1e4	1e4	1e4
Wanda	10.09	10.07	10.09	10.63	11.42

There exists exact and sparse sub-networks in pre-trained LLMs.

Higher Sparsity

				LLaMA]	LLaMA	-2
Method	Weight Update	Sparsity	7B	13 B	30B	65B	7B	13 B	70B
Dense	-	0%	5.68	5.09	4.77	3.56	5.12	4.57	3.12
Magnitude	×	80%	1e5	3e4	1e5	2e4	nan	5e4	3e4
SparseGPT	\checkmark	80%	2e2	1e2	54.98	32.80	1e2	1e2	25.86
Wanda	×	80%	5e3	4e3	2e3	2e3	5e3	2e3	1e2

Weight update can be helpful in high sparsity regime.

Fine-tuning

Evaluation	Dense	Fine-tuning	50%	4:8	2:4
	×		54.21	52.76	48.53
Zero-Shot	59.99	LoRA	56.53	54.87	54.46
		Full		56.65	56.19
		×	7.26	8.57	11.53
Perplexity	5.68	LoRA	6.84	7.29	8.24
		Full	5.98	6.63	7.02

Pruning Configuration

	Comparison Group						
Pruning Metric	layer	(input, 1)	(input, 128)	(output, 1)	(output, 128)		
Magnitude: $ \mathbf{W}_{ij} $	<u>17.29</u>	8.86	16.82	13.41	17.47		
SparseGPT: $\left[\mathbf{W} ^2 / \text{diag}(\mathbf{H}^{-1}) \right]_{ij}$	7.91	8.86	8.02	7.41	7.74		
Wanda: $ \mathbf{W}_{ij} \cdot \mathbf{X}_j $	7.95	8.86	8.12	<u>7.26</u>	7.71		

Wanda's pruning configuration is optimal.

Pruning Efficiency

	LLaMA							
Method	7B	13 B	30B	65B				
SparseGPT	203.1	339.0	810.3	1353.4				
Wanda	0.54	0.91	2.9	5.6				

Pruning Efficiency

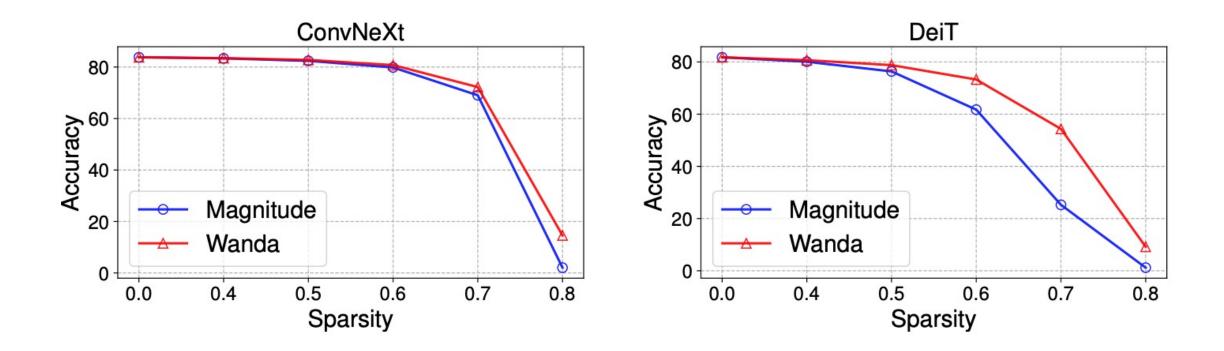
	LLaMA			
Method	7B	13 B	30B	65B
SparseGPT	203.1	339.0	810.3	1353.4
Wanda	0.54	0.91	2.9	5.6

Critical when pruning needs to be performed real-time.

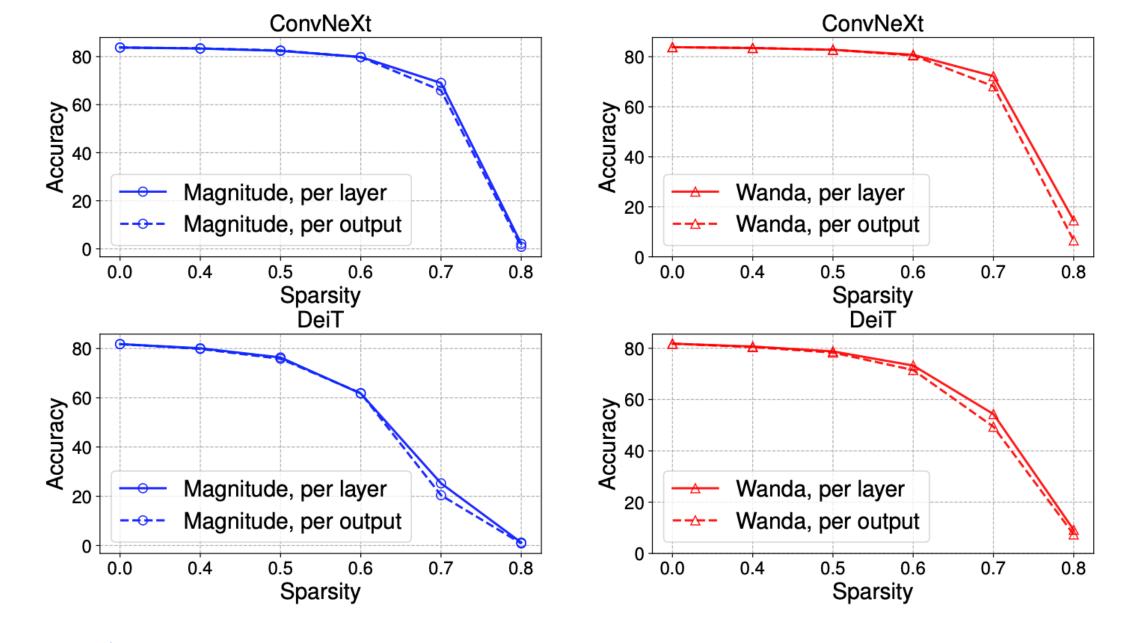
A general pruning method?

ImageNet Classification.

ConvNeXt and DeiT.



Wanda's pruning metric is consistently better than weight magnitude.



Our observation on pruning per output does not hold in general.

Summary

Activations are just as important as weights for network pruning.

Summary

Activations are just as important as weights for network pruning.

We demonstrate this on pruning large language models.

Weights are pruned according to two principles:

- magnitude multiplied by input activation norms
- comparing weights on a *per output* basis.

It can find effective *exact* sparse networks in pretrained LLMs.