
A Simple and Effective Pruning Approach for 
Large Language Models

Mingjie Sun
Carnegie Mellon University

Joint work with Zhuang Liu, Anna Bair, Zico Kolter

1



Network Pruning
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A popular approach for compressing neural networks.

Learning both weights and connections for Efficient Neural Networks. Han et al, 2015



Network Pruning
ICLR 2019 best paper award.
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Network Pruning
Huge research interest.
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Behind the success
Magnitude Pruning: remove weights with smallest magnitudes.
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Behind the success
Magnitude Pruning: remove weights with smallest magnitudes.
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A simple but tough to beat baseline



Setting the scope
• Type of pruning:

• Unstructured Pruning
• Structured Pruning

7



Setting the scope
• Type of pruning:

• Unstructured Pruning
• Structured Pruning

8



Setting the scope
• Type of pruning:

• Unstructured Pruning
• Structured Pruning

• Pruning procedure

9Learning both weights and connections for Efficient Neural Networks. Han et al, 2015



Setting the scope
• Type of pruning:

• Unstructured Pruning
• Structured Pruning

• Pruning procedure

10Learning both weights and connections for Efficient Neural Networks. Han et al, 2015



Magnitude Pruning
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Magnitude Pruning
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Magnitude Pruning
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Comparison Group



Magnitude Pruning
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Magnitude Pruning
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A Dilemma for Pruning LLMs
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Magnitude Pruning ConvNeXt LLaMA-7B

#Params 89M 7B

Dense 83.8%                             5.68

50% sparsity

ImageNet Accuracy WikiText Perplexity



A Dilemma for Pruning LLMs
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Magnitude Pruning ConvNeXt LLaMA-7B

#Params 89M 7B

Dense 83.8%                             5.68

50% sparsity 82.4% 17.29

ImageNet Accuracy WikiText Perplexity

Significant performance drop. 



A Dilemma for Pruning LLMs
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WikiText perplexity Dense 10% 20%

OPT-13B 10.13 14.45 9e3

Explodes at 20% sparsity!!!



A Dilemma for Pruning LLMs

Large language models, despite having 100x or 1000x more parameters, are 
significantly harder to prune directly.
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Another Emergent Property?



A Missing Ingredient
Outlier features affect quantization performance severely in large language models.

23LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. Dettmers et al, 2022.



Activations matter in network pruning
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𝐲

𝒙! 𝒙"

𝒘! 𝒘"

Consider a neuron with two inputs. 



Activations matter in network pruning

Magnitude Pruning:

        always remove 𝒘!, assume |𝒘!| < |𝒘"|
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Activations matter in network pruning

Magnitude Pruning:

        always remove 𝒘!, assume |𝒘!| < |𝒘"|

        

        What if 𝒙! and 𝒙" differ significantly in scale?
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𝒘! 𝒘"



Limitations of Magnitude Pruning

Limitations of Magnitude Pruning:

        No considerations of activations.
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Limitations of Magnitude Pruning

Limitations of Magnitude Pruning:

        No considerations of activations.

         

        Activations are just as important as weights.
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Our method
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We propose Wanda: Pruning by Weights and activations.

Next we show how Wanda would prune this weight.



Weights and Activations
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Weights and Activations
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Input Dimension

Output Dimension



Part 1: Pruning Metric
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Pruning Metric



Another line of work
Core of GPTQ and SparseGPT: 

Layer-wise reconstruction!

34
GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al, 2023.
SparseGPT: Massive Language Models can be accurately pruned in one-shot. Frantar et al, 2023.



Another line of work
Core of GPTQ and SparseGPT: 

Layer-wise reconstruction!

35
GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al, 2023.
SparseGPT: Massive Language Models can be accurately pruned in one-shot. Frantar et al, 2023.

Quantized/Sparse weights.



Another line of work
Effect of removal can be characterized by:
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Another line of work

Reduction inspired from Optimal Brain Damage (OBD):
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Another line of work

Reduction inspired from Optimal Brain Damage (OBD):
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Dropping off-diagonal elements in Hessian.



Part 2: Comparison Group
Compare and remove weights locally inside each output neuron.
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Pruning per output
Compare and remove weights for each output neuron.
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Comparison Group



Part 2: Comparison Group
Counter-intuitive.

Better than layer-wise comparisons for LLMs.
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Part 2: Comparison Group
Counter-intuitive.

Better than layer-wise comparisons for LLMs.
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No idea why!!!



Putting it all together

43



Comparison
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Comparison
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Wanda can preserve outlier features.



In Practice
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Structured N:M Sparsity
Definition: At most N non-zeros in every contiguous group of M weights.

In practice, 2:4 and 4:8 sparsity.
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Accelerating Sparse Deep Neural Networks. Mishra et al, 2021



Zero-Shot
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Zero-Shot
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Consistently better than magnitude pruning. 



Zero-Shot
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Wanda performs competitively against SparseGPT.



Perplexity
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OPT-13B
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Method 10% 20% 30% 40% 50%

Magnitude 14.45 9e3 1e4 1e4 1e4

Wanda 10.09 10.07 10.09 10.63 11.42



OPT-13B
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Method 10% 20% 30% 40% 50%

Magnitude 14.45 9e3 1e4 1e4 1e4

Wanda 10.09 10.07 10.09 10.63 11.42

There exists exact and sparse sub-networks in pre-trained LLMs.



Higher Sparsity
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Weight update can be helpful in high sparsity regime.



Fine-tuning
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Pruning Configuration
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Wanda’s pruning configuration is optimal.



Pruning Efficiency
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Pruning Efficiency
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Critical when pruning needs to be performed real-time.



A general pruning method?
ImageNet Classification.

ConvNeXt and DeiT.
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60

Wanda’s pruning metric is consistently better than weight magnitude.



61Our observation on pruning per output does not hold in general.



Summary
Activations are just as important as weights for network pruning.
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Summary
Activations are just as important as weights for network pruning.

We demonstrate this on pruning large language models. 

Weights are pruned according to two principles:
• magnitude multiplied by input activation norms
• comparing weights on a per output basis.

It can find effective exact sparse networks in pretrained LLMs.
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